DLMF:22.6.E6 (Q6940): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / Symbols used
 
Property / Symbols used: Jacobian elliptic function / rank
 
Normal rank
Property / Symbols used: Jacobian elliptic function / qualifier
 
test:

cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}

\Jacobiellcnk@{\NVar{z}}{\NVar{k}}
Property / Symbols used: Jacobian elliptic function / qualifier
 
xml-id: C22.S2.E5.m2abdec

Revision as of 13:57, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:22.6.E6
No description defined

    Statements

    cn ( 2 z , k ) = cn 2 ( z , k ) - sn 2 ( z , k ) dn 2 ( z , k ) 1 - k 2 sn 4 ( z , k ) = cn 4 ( z , k ) - k 2 sn 4 ( z , k ) 1 - k 2 sn 4 ( z , k ) , Jacobi-elliptic-cn 2 𝑧 𝑘 Jacobi-elliptic-cn 2 𝑧 𝑘 Jacobi-elliptic-sn 2 𝑧 𝑘 Jacobi-elliptic-dn 2 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 Jacobi-elliptic-cn 4 𝑧 𝑘 superscript superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(2z,k\right)=\frac{{% \operatorname{cn}^{2}}\left(z,k\right)-{\operatorname{sn}^{2}}\left(z,k\right)% {\operatorname{dn}^{2}}\left(z,k\right)}{1-k^{2}{\operatorname{sn}^{4}}\left(z% ,k\right)}=\frac{{\operatorname{cn}^{4}}\left(z,k\right)-{k^{\prime}}^{2}{% \operatorname{sn}^{4}}\left(z,k\right)}{1-k^{2}{\operatorname{sn}^{4}}\left(z,% k\right)},}}
    0 references
    0 references
    cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E5.m2abdec
    0 references