2.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/2.4.E2 2.4.E2] | | | [https://dlmf.nist.gov/2.4.E2 2.4.E2] || <math qid="Q755">Q(z) = \int_{0}^{\infty}e^{-zt}q(t)\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>Q(z) = \int_{0}^{\infty}e^{-zt}q(t)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Q(z) = int(exp(- z*t)*q(t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Q[z] == Integrate[Exp[- z*t]*q[t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [292 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3660254032+1.366025404*I | ||
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.5000000004*I | Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.5000000004*I | ||
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732050808-1.000000001*I | Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732050808-1.000000001*I | ||
Line 22: | Line 22: | ||
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/2.4.E5 2.4.E5] | | | [https://dlmf.nist.gov/2.4.E5 2.4.E5] || <math qid="Q758">q(t) = \frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}e^{tz}Q(z)\diff{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>q(t) = \frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}e^{tz}Q(z)\diff{z}</syntaxhighlight> || <math>0 < t, t < \infty</math> || <syntaxhighlight lang=mathematica>q(t) = (1)/(2*Pi*I)*int(exp(t*z)*Q(z), z = sigma - I*infinity..sigma + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>q[t] == Divide[1,2*Pi*I]*Integrate[Exp[t*z]*Q[z], {z, \[Sigma]- I*Infinity, \[Sigma]+ I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I | ||
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I | Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I | ||
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732050808+1.*I | Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.732050808+1.*I | ||
Line 28: | Line 28: | ||
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2), t = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2), t = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/2.4#Ex1 2.4#Ex1] | | | [https://dlmf.nist.gov/2.4#Ex1 2.4#Ex1] || <math qid="Q764">p(t) = p(a)+\sum_{s=0}^{\infty}p_{s}(t-a)^{s+\mu}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p(t) = p(a)+\sum_{s=0}^{\infty}p_{s}(t-a)^{s+\mu}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p(t) = p(a)+ sum((p[s](t - a))^(s + mu), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[t] == p[a]+ Sum[(Subscript[p, s][t - a])^(s + \[Mu]), {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/2.4#Ex2 2.4#Ex2] | | | [https://dlmf.nist.gov/2.4#Ex2 2.4#Ex2] || <math qid="Q765">q(t) = \sum_{s=0}^{\infty}q_{s}(t-a)^{s+\lambda-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>q(t) = \sum_{s=0}^{\infty}q_{s}(t-a)^{s+\lambda-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q(t) = sum((q[s](t - a))^(s + lambda - 1), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">q[t] == Sum[(Subscript[q, s][t - a])^(s + \[Lambda]- 1), {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/2.4.E13 2.4.E13] | | | [https://dlmf.nist.gov/2.4.E13 2.4.E13] || <math qid="Q767">|\theta+\mu\omega+\phase@@{p_{0}}| \leq \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>|\theta+\mu\omega+\phase@@{p_{0}}| \leq \tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>abs(theta + mu*omega + argument(p[0])) <= (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Abs[\[Theta]+ \[Mu]*\[Omega]+ Arg[Subscript[p, 0]]] <= Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [174 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.331674280 <= 1.570796327 | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.720287017 <= 1.570796327 | Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.720287017 <= 1.570796327 | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.852957222 <= 1.570796327 | Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.852957222 <= 1.570796327 | ||
Line 40: | Line 40: | ||
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/2.4.E14 2.4.E14] | | | [https://dlmf.nist.gov/2.4.E14 2.4.E14] || <math qid="Q768">I(z) = \int_{t_{0}}^{b}e^{-zp(t)}q(t)\diff{t}-\int_{t_{0}}^{a}e^{-zp(t)}q(t)\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>I(z) = \int_{t_{0}}^{b}e^{-zp(t)}q(t)\diff{t}-\int_{t_{0}}^{a}e^{-zp(t)}q(t)\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(int(exp(- zp(t))*q(t), t = a..b)) = int(exp(- zp(t))*q(t), t = t[0]..b)- int(exp(- zp(t))*q(t), t = t[0]..a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Integrate[Exp[- zp[t]]*q[t], {t, a, b}, GenerateConditions->None]) == Integrate[Exp[- zp[t]]*q[t], {t, Subscript[t, 0], b}, GenerateConditions->None]- Integrate[Exp[- zp[t]]*q[t], {t, Subscript[t, 0], a}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 300] | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/2.4.E18 2.4.E18] | | | [https://dlmf.nist.gov/2.4.E18 2.4.E18] || <math qid="Q773">p(\alpha,t) = \tfrac{1}{3}w^{3}+aw^{2}+bw+c</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p(\alpha,t) = \tfrac{1}{3}w^{3}+aw^{2}+bw+c</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p(alpha , t) = (1)/(3)*(w)^(3)+ a*(w)^(2)+ b*w + c</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[\[Alpha], t] == Divide[1,3]*(w)^(3)+ a*(w)^(2)+ b*w + c</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/2.4.E20 2.4.E20] | | | [https://dlmf.nist.gov/2.4.E20 2.4.E20] || <math qid="Q775">q(\alpha,t)\deriv{t}{w} = q(\alpha,t)\frac{w^{2}+2aw+b}{\ipderiv{p(\alpha,t)}{t}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>q(\alpha,t)\deriv{t}{w} = q(\alpha,t)\frac{w^{2}+2aw+b}{\ipderiv{p(\alpha,t)}{t}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>q(alpha , t)* diff(t, w) = q(alpha , t)*((w)^(2)+ 2*a*w + b)/(diff(p(alpha , t), t))</syntaxhighlight> || <syntaxhighlight lang=mathematica>q[\[Alpha], t]* D[t, w] == q[\[Alpha], t]*Divide[(w)^(2)+ 2*a*w + b,D[p[\[Alpha], t], t]]</syntaxhighlight> || Error || Failure || - || Skipped - Because timed out | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/2.4.E21 2.4.E21] | | | [https://dlmf.nist.gov/2.4.E21 2.4.E21] || <math qid="Q776">w = z^{-1/3}v-a</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w = z^{-1/3}v-a</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w = (z)^(- 1/3)* v - a</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w == (z)^(- 1/3)* v - a</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:01, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
2.4.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q(z) = \int_{0}^{\infty}e^{-zt}q(t)\diff{t}}
Q(z) = \int_{0}^{\infty}e^{-zt}q(t)\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Q(z) = int(exp(- z*t)*q(t), t = 0..infinity)
|
Q[z] == Integrate[Exp[- z*t]*q[t], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [292 / 300] Result: -.3660254032+1.366025404*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: Float(undefined)+.5000000004*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Result: 1.732050808-1.000000001*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
Result: Float(undefined)-.8660254040*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [284 / 300]
Result: Complex[-0.3660254037844386, 1.3660254037844386]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.7320508075688774, -0.9999999999999999]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
2.4.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q(t) = \frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}e^{tz}Q(z)\diff{z}}
q(t) = \frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}e^{tz}Q(z)\diff{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < t, t < \infty} | q(t) = (1)/(2*Pi*I)*int(exp(t*z)*Q(z), z = sigma - I*infinity..sigma + I*infinity)
|
q[t] == Divide[1,2*Pi*I]*Integrate[Exp[t*z]*Q[z], {z, \[Sigma]- I*Infinity, \[Sigma]+ I*Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [300 / 300] Result: 1.299038106+.7500000000*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = 1.5}
Result: .4330127020+.2500000000*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = .5}
Result: 1.732050808+1.*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, t = 2}
Result: 1.299038106+.7500000000*I
Test Values: {Q = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, sigma = -1/2+1/2*I*3^(1/2), t = 1.5}
... skip entries to safe data |
Skipped - Because timed out |
2.4#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(t) = p(a)+\sum_{s=0}^{\infty}p_{s}(t-a)^{s+\mu}}
p(t) = p(a)+\sum_{s=0}^{\infty}p_{s}(t-a)^{s+\mu} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | p(t) = p(a)+ sum((p[s](t - a))^(s + mu), s = 0..infinity) |
p[t] == p[a]+ Sum[(Subscript[p, s][t - a])^(s + \[Mu]), {s, 0, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
2.4#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q(t) = \sum_{s=0}^{\infty}q_{s}(t-a)^{s+\lambda-1}}
q(t) = \sum_{s=0}^{\infty}q_{s}(t-a)^{s+\lambda-1} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | q(t) = sum((q[s](t - a))^(s + lambda - 1), s = 0..infinity) |
q[t] == Sum[(Subscript[q, s][t - a])^(s + \[Lambda]- 1), {s, 0, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
2.4.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\theta+\mu\omega+\phase@@{p_{0}}| \leq \tfrac{1}{2}\pi}
|\theta+\mu\omega+\phase@@{p_{0}}| \leq \tfrac{1}{2}\pi |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | abs(theta + mu*omega + argument(p[0])) <= (1)/(2)*Pi
|
Abs[\[Theta]+ \[Mu]*\[Omega]+ Arg[Subscript[p, 0]]] <= Divide[1,2]*Pi
|
Failure | Failure | Failed [174 / 300] Result: 2.331674280 <= 1.570796327
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = 1/2*3^(1/2)+1/2*I}
Result: 3.720287017 <= 1.570796327
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = -1/2+1/2*I*3^(1/2)}
Result: 1.852957222 <= 1.570796327
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = -1/2*3^(1/2)-1/2*I}
Result: 4.710057957 <= 1.570796327
Test Values: {mu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, theta = 1/2*3^(1/2)+1/2*I, p[0] = -1.5}
... skip entries to safe data |
Failed [211 / 300]
Result: False
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[θ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[p, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.4.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle I(z) = \int_{t_{0}}^{b}e^{-zp(t)}q(t)\diff{t}-\int_{t_{0}}^{a}e^{-zp(t)}q(t)\diff{t}}
I(z) = \int_{t_{0}}^{b}e^{-zp(t)}q(t)\diff{t}-\int_{t_{0}}^{a}e^{-zp(t)}q(t)\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (int(exp(- zp(t))*q(t), t = a..b)) = int(exp(- zp(t))*q(t), t = t[0]..b)- int(exp(- zp(t))*q(t), t = t[0]..a)
|
(Integrate[Exp[- zp[t]]*q[t], {t, a, b}, GenerateConditions->None]) == Integrate[Exp[- zp[t]]*q[t], {t, Subscript[t, 0], b}, GenerateConditions->None]- Integrate[Exp[- zp[t]]*q[t], {t, Subscript[t, 0], a}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 300] |
2.4.E18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(\alpha,t) = \tfrac{1}{3}w^{3}+aw^{2}+bw+c}
p(\alpha,t) = \tfrac{1}{3}w^{3}+aw^{2}+bw+c |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | p(alpha , t) = (1)/(3)*(w)^(3)+ a*(w)^(2)+ b*w + c |
p[\[Alpha], t] == Divide[1,3]*(w)^(3)+ a*(w)^(2)+ b*w + c |
Skipped - no semantic math | Skipped - no semantic math | - | - |
2.4.E20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q(\alpha,t)\deriv{t}{w} = q(\alpha,t)\frac{w^{2}+2aw+b}{\ipderiv{p(\alpha,t)}{t}}}
q(\alpha,t)\deriv{t}{w} = q(\alpha,t)\frac{w^{2}+2aw+b}{\ipderiv{p(\alpha,t)}{t}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | q(alpha , t)* diff(t, w) = q(alpha , t)*((w)^(2)+ 2*a*w + b)/(diff(p(alpha , t), t))
|
q[\[Alpha], t]* D[t, w] == q[\[Alpha], t]*Divide[(w)^(2)+ 2*a*w + b,D[p[\[Alpha], t], t]]
|
Error | Failure | - | Skipped - Because timed out |
2.4.E21 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = z^{-1/3}v-a}
w = z^{-1/3}v-a |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | w = (z)^(- 1/3)* v - a |
w == (z)^(- 1/3)* v - a |
Skipped - no semantic math | Skipped - no semantic math | - | - |