3.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex10 3.7#Ex10] || [[Item:Q1338|<math>A_{11}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{11}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[11](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 11][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex10 3.7#Ex10] || <math qid="Q1338">A_{11}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{11}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[11](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 11][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex11 3.7#Ex11] || [[Item:Q1339|<math>A_{12}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{12}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[12](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 12][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex11 3.7#Ex11] || <math qid="Q1339">A_{12}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{12}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[12](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 12][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex12 3.7#Ex12] || [[Item:Q1340|<math>A_{21}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s+1}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{21}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[21](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 21][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex12 3.7#Ex12] || <math qid="Q1340">A_{21}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s+1}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{21}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[21](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 21][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex13 3.7#Ex13] || [[Item:Q1341|<math>A_{22}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s+1}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{22}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[22](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 22][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex13 3.7#Ex13] || <math qid="Q1341">A_{22}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s+1}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{22}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[22](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 22][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex14 3.7#Ex14] || [[Item:Q1342|<math>b_{1}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{1}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[1](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 1][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex14 3.7#Ex14] || <math qid="Q1342">b_{1}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{1}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[1](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 1][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7#Ex15 3.7#Ex15] || [[Item:Q1343|<math>b_{2}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s+1}(z)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{2}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[2](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 2][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7#Ex15 3.7#Ex15] || <math qid="Q1343">b_{2}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s+1}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>b_{2}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s+1}(z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">b[2](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s + 1](z), s = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[b, 2][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7.E13 3.7.E13] || [[Item:Q1347|<math>\mathbf{A}\mathbf{w} = \mathbf{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathbf{A}\mathbf{w} = \mathbf{b}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A*w = b</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A*w == b</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7.E13 3.7.E13] || <math qid="Q1347">\mathbf{A}\mathbf{w} = \mathbf{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathbf{A}\mathbf{w} = \mathbf{b}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A*w = b</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A*w == b</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/3.7.E15 3.7.E15] || [[Item:Q1350|<math>\deriv[2]{w_{k}}{x}+(\lambda_{k}-q(x))w_{k} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w_{k}}{x}+(\lambda_{k}-q(x))w_{k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w[k], [x$(2)])+(lambda[k]- q(x))*w[k] = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Subscript[w, k], {x, 2}]+(Subscript[\[Lambda], k]- q[x])*Subscript[w, k] == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
| [https://dlmf.nist.gov/3.7.E15 3.7.E15] || <math qid="Q1350">\deriv[2]{w_{k}}{x}+(\lambda_{k}-q(x))w_{k} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w_{k}}{x}+(\lambda_{k}-q(x))w_{k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w[k], [x$(2)])+(lambda[k]- q(x))*w[k] = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Subscript[w, k], {x, 2}]+(Subscript[\[Lambda], k]- q[x])*Subscript[w, k] == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2500000002-.4330127020*I
Line 36: Line 36:
Test Values: {Rule[k, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[λ, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[λ, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/3.7.E16 3.7.E16] || [[Item:Q1351|<math>w_{k}(a) = w_{k}(b)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w_{k}(a) = w_{k}(b)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[k](a) = w[k](b)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[w, k][a] == Subscript[w, k][b]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/3.7.E16 3.7.E16] || <math qid="Q1351">w_{k}(a) = w_{k}(b)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w_{k}(a) = w_{k}(b)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[k](a) = w[k](b)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[w, k][a] == Subscript[w, k][b]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:03, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.7#Ex10 A 11 ( τ , z ) = s = 0 τ s s ! f s ( z ) subscript 𝐴 11 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑓 𝑠 𝑧 {\displaystyle{\displaystyle A_{11}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}% {s!}f_{s}(z)}}
A_{11}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s}(z)

A[11](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s](z), s = 0..infinity)
Subscript[A, 11][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7#Ex11 A 12 ( τ , z ) = s = 0 τ s s ! g s ( z ) subscript 𝐴 12 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑔 𝑠 𝑧 {\displaystyle{\displaystyle A_{12}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}% {s!}g_{s}(z)}}
A_{12}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s}(z)

A[12](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s](z), s = 0..infinity)
Subscript[A, 12][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7#Ex12 A 21 ( τ , z ) = s = 0 τ s s ! f s + 1 ( z ) subscript 𝐴 21 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑓 𝑠 1 𝑧 {\displaystyle{\displaystyle A_{21}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}% {s!}f_{s+1}(z)}}
A_{21}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}f_{s+1}(z)

A[21](tau , z) = sum(((tau)^(s))/(factorial(s))*f[s + 1](z), s = 0..infinity)
Subscript[A, 21][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[f, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7#Ex13 A 22 ( τ , z ) = s = 0 τ s s ! g s + 1 ( z ) subscript 𝐴 22 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑔 𝑠 1 𝑧 {\displaystyle{\displaystyle A_{22}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}% {s!}g_{s+1}(z)}}
A_{22}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}g_{s+1}(z)

A[22](tau , z) = sum(((tau)^(s))/(factorial(s))*g[s + 1](z), s = 0..infinity)
Subscript[A, 22][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[g, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7#Ex14 b 1 ( τ , z ) = s = 0 τ s s ! h s ( z ) subscript 𝑏 1 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑠 𝑧 {\displaystyle{\displaystyle b_{1}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}{% s!}h_{s}(z)}}
b_{1}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s}(z)

b[1](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s](z), s = 0..infinity)
Subscript[b, 1][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7#Ex15 b 2 ( τ , z ) = s = 0 τ s s ! h s + 1 ( z ) subscript 𝑏 2 𝜏 𝑧 superscript subscript 𝑠 0 superscript 𝜏 𝑠 𝑠 subscript 𝑠 1 𝑧 {\displaystyle{\displaystyle b_{2}(\tau,z)=\sum_{s=0}^{\infty}\frac{\tau^{s}}{% s!}h_{s+1}(z)}}
b_{2}(\tau,z) = \sum_{s=0}^{\infty}\frac{\tau^{s}}{s!}h_{s+1}(z)

b[2](tau , z) = sum(((tau)^(s))/(factorial(s))*h[s + 1](z), s = 0..infinity)
Subscript[b, 2][\[Tau], z] == Sum[Divide[\[Tau]^(s),(s)!]*Subscript[h, s + 1][z], {s, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
3.7.E13 𝐀𝐰 = 𝐛 𝐀𝐰 𝐛 {\displaystyle{\displaystyle\mathbf{A}\mathbf{w}=\mathbf{b}}}
\mathbf{A}\mathbf{w} = \mathbf{b}

A*w = b
A*w == b
Skipped - no semantic math Skipped - no semantic math - -
3.7.E15 d 2 w k d x 2 + ( λ k - q ( x ) ) w k = 0 derivative subscript 𝑤 𝑘 𝑥 2 subscript 𝜆 𝑘 𝑞 𝑥 subscript 𝑤 𝑘 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w_{k}}{{\mathrm{d}x}^{2}}+(% \lambda_{k}-q(x))w_{k}=0}}
\deriv[2]{w_{k}}{x}+(\lambda_{k}-q(x))w_{k} = 0

diff(w[k], [x$(2)])+(lambda[k]- q(x))*w[k] = 0
D[Subscript[w, k], {x, 2}]+(Subscript[\[Lambda], k]- q[x])*Subscript[w, k] == 0
Failure Failure
Failed [300 / 300]
Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 2}

Result: -.2500000002-.4330127020*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = 1/2*3^(1/2)+1/2*I, k = 3}

Result: .4330127020-.2500000002*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, q = 1/2*3^(1/2)+1/2*I, x = 1.5, lambda[k] = 1/2*3^(1/2)+1/2*I, w[k] = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.25000000000000006, -0.43301270189221924]
Test Values: {Rule[k, 1], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[λ, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.25000000000000006, -0.43301270189221924]
Test Values: {Rule[k, 2], Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[λ, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
3.7.E16 w k ( a ) = w k ( b ) subscript 𝑤 𝑘 𝑎 subscript 𝑤 𝑘 𝑏 {\displaystyle{\displaystyle w_{k}(a)=w_{k}(b)}}
w_{k}(a) = w_{k}(b)

w[k](a) = w[k](b)
Subscript[w, k][a] == Subscript[w, k][b]
Skipped - no semantic math Skipped - no semantic math - -