4.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.7.E1 4.7.E1] || [[Item:Q1577|<math>\deriv{}{z}\ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.7.E1 4.7.E1] || <math qid="Q1577">\deriv{}{z}\ln@@{z} = \frac{1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E2 4.7.E2] || [[Item:Q1578|<math>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.7.E2 4.7.E2] || <math qid="Q1578">\deriv{}{z}\Ln@@{z} = \frac{1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\Ln@@{z} = \frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), z) = (1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], z] == Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E3 4.7.E3] || [[Item:Q1579|<math>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/4.7.E3 4.7.E3] || <math qid="Q1579">\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E4 4.7.E4] || [[Item:Q1580|<math>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/4.7.E4 4.7.E4] || <math qid="Q1580">\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E7 4.7.E7] || [[Item:Q1583|<math>\deriv{}{z}e^{z} = e^{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z), z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z], z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/4.7.E7 4.7.E7] || <math qid="Q1583">\deriv{}{z}e^{z} = e^{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{z} = e^{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z), z) = exp(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z], z] == Exp[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E8 4.7.E8] || [[Item:Q1584|<math>\deriv{}{z}e^{az} = ae^{az}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{az} = ae^{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(a*z), z) = a*exp(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[a*z], z] == a*Exp[a*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.7.E8 4.7.E8] || <math qid="Q1584">\deriv{}{z}e^{az} = ae^{az}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}e^{az} = ae^{az}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(a*z), z) = a*exp(a*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[a*z], z] == a*Exp[a*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E9 4.7.E9] || [[Item:Q1585|<math>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff((a)^(z), z) = (a)^(z)* ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(a)^(z), z] == (a)^(z)* Log[a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.7.E9 4.7.E9] || <math qid="Q1585">\deriv{}{z}a^{z} = a^{z}\ln@@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}a^{z} = a^{z}\ln@@{a}</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff((a)^(z), z) = (a)^(z)* ln(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(a)^(z), z] == (a)^(z)* Log[a]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E10 4.7.E10] || [[Item:Q1586|<math>\deriv{}{z}z^{a} = az^{a-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}z^{a} = az^{a-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(a), z) = a*(z)^(a - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(a), z] == a*(z)^(a - 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
| [https://dlmf.nist.gov/4.7.E10 4.7.E10] || <math qid="Q1586">\deriv{}{z}z^{a} = az^{a-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}z^{a} = az^{a-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((z)^(a), z) = a*(z)^(a - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[(z)^(a), z] == a*(z)^(a - 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/4.7.E14 4.7.E14] || [[Item:Q1590|<math>\deriv[2]{w}{z} = aw</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z} = aw</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)]) = a*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}] == a*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
| [https://dlmf.nist.gov/4.7.E14 4.7.E14] || <math qid="Q1590">\deriv[2]{w}{z} = aw</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z} = aw</syntaxhighlight> || <math>a \neq 0</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)]) = a*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}] == a*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.299038106+.7500000000*I
Line 38: Line 38:
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.7.E15 4.7.E15] || [[Item:Q1591|<math>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.7.E15 4.7.E15] || <math qid="Q1591">w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:05, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.7.E1 d d z ln z = 1 z derivative 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\ln z=\frac{1}{z}}}
\deriv{}{z}\ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E2 d d z Ln z = 1 z derivative 𝑧 multivalued-natural-logarithm 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{Ln}z=% \frac{1}{z}}}
\deriv{}{z}\Ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E3 d n d z n ln z = ( - 1 ) n - 1 ( n - 1 ) ! z - n derivative 𝑧 𝑛 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\ln z=(-% 1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E4 d n d z n Ln z = ( - 1 ) n - 1 ( n - 1 ) ! z - n derivative 𝑧 𝑛 multivalued-natural-logarithm 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}% \operatorname{Ln}z=(-1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E7 d d z e z = e z derivative 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{z}=e^{z}}}
\deriv{}{z}e^{z} = e^{z}

diff(exp(z), z) = exp(z)
D[Exp[z], z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.7.E8 d d z e a z = a e a z derivative 𝑧 superscript 𝑒 𝑎 𝑧 𝑎 superscript 𝑒 𝑎 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{az}=ae^{az}}}
\deriv{}{z}e^{az} = ae^{az}

diff(exp(a*z), z) = a*exp(a*z)
D[Exp[a*z], z] == a*Exp[a*z]
Successful Successful - Successful [Tested: 42]
4.7.E9 d d z a z = a z ln a derivative 𝑧 superscript 𝑎 𝑧 superscript 𝑎 𝑧 𝑎 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}a^{z}=a^{z}\ln a}}
\deriv{}{z}a^{z} = a^{z}\ln@@{a}
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
diff((a)^(z), z) = (a)^(z)* ln(a)
D[(a)^(z), z] == (a)^(z)* Log[a]
Successful Successful - Successful [Tested: 42]
4.7.E10 d d z z a = a z a - 1 derivative 𝑧 superscript 𝑧 𝑎 𝑎 superscript 𝑧 𝑎 1 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}z^{a}=az^{a-1}}}
\deriv{}{z}z^{a} = az^{a-1}

diff((z)^(a), z) = a*(z)^(a - 1)
D[(z)^(a), z] == a*(z)^(a - 1)
Successful Successful - Successful [Tested: 42]
4.7.E14 d 2 w d z 2 = a w derivative 𝑤 𝑧 2 𝑎 𝑤 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}=aw}}
\deriv[2]{w}{z} = aw
a 0 𝑎 0 {\displaystyle{\displaystyle a\neq 0}}
diff(w, [z$(2)]) = a*w
D[w, {z, 2}] == a*w
Failure Failure
Failed [300 / 300]
Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.7.E15 w = A e a z + B e - a z 𝑤 𝐴 superscript 𝑒 𝑎 𝑧 𝐵 superscript 𝑒 𝑎 𝑧 {\displaystyle{\displaystyle w=Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}}}
w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}

w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)
w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]
Skipped - no semantic math Skipped - no semantic math - -