4.17: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.17.E1 4.17.E1] || [[Item:Q1666|<math>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sin(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.17.E1 4.17.E1] || <math qid="Q1666">\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sin(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.17.E2 4.17.E2] || [[Item:Q1667|<math>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tan(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.17.E2 4.17.E2] || <math qid="Q1667">\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tan(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.17.E3 4.17.E3] || [[Item:Q1668|<math>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.17.E3 4.17.E3] || <math qid="Q1668">\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 11:06, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.17.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\sin@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((sin(z))/(z), z = 0) = 1
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\tan@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((tan(z))/(z), z = 0) = 1
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}}
\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]