DLMF:26.12.E23 (Q7940): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Property / Symbols used | |||
Property / Symbols used: Q12201 / rank | |||
Normal rank | |||
Property / Symbols used: Q12201 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r}r | |||
Property / Symbols used: Q12201 / qualifier | |||
xml-id: C26.S12.XMD2.m1rdec |
Revision as of 13:06, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:26.12.E23 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{\begin{subarray}{c}\pi\subseteq B(r,r,r)\\ \pi\mbox{\scriptsize\ cyclically symmetric}\end{subarray}}q^{\abs{\pi}}=\prod_{h=1}^{r}\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{1\leq h<j\leq r}\frac{1-q^{3(h+2j-1)}}{1-q^{3(h+j-1)}}=\prod_{h=1}^{r}\left(\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{j=h}^{r}\frac{1-q^{3(r+h+j-1)}}{1-q^{3(2h+j-1)}}\right).}
0 references
0 references
0 references
0 references
0 references