10.12: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.12.E1 10.12.E1] || [[Item:Q3116|<math>e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}</syntaxhighlight> || <math>\realpart@@{(m+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 42] || Successful [Tested: 42]
| [https://dlmf.nist.gov/10.12.E1 10.12.E1] || <math qid="Q3116">e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}</syntaxhighlight> || <math>\realpart@@{(m+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 42] || Successful [Tested: 42]
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex1 10.12#Ex1] || [[Item:Q3117|<math>\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.12#Ex1 10.12#Ex1] || <math qid="Q3117">\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex2 10.12#Ex2] || [[Item:Q3118|<math>\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}</syntaxhighlight> || <math>\realpart@@{((2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.12#Ex2 10.12#Ex2] || <math qid="Q3118">\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}</syntaxhighlight> || <math>\realpart@@{((2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex3 10.12#Ex3] || [[Item:Q3119|<math>\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.12#Ex3 10.12#Ex3] || <math qid="Q3119">\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex4 10.12#Ex4] || [[Item:Q3120|<math>\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}</syntaxhighlight> || <math>\realpart@@{((2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)*theta), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.12#Ex4 10.12#Ex4] || <math qid="Q3120">\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}</syntaxhighlight> || <math>\realpart@@{((2k+1)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)*theta), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.12.E4 10.12.E4] || [[Item:Q3121|<math>1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
| [https://dlmf.nist.gov/10.12.E4 10.12.E4] || <math qid="Q3121">1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex5 10.12#Ex5] || [[Item:Q3122|<math>\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, …]]
| [https://dlmf.nist.gov/10.12#Ex5 10.12#Ex5] || <math qid="Q3122">\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex6 10.12#Ex6] || [[Item:Q3123|<math>\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], …]
| [https://dlmf.nist.gov/10.12#Ex6 10.12#Ex6] || <math qid="Q3123">\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex7 10.12#Ex7] || [[Item:Q3124|<math>\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0, \realpart@@{(7+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, …]]
| [https://dlmf.nist.gov/10.12#Ex7 10.12#Ex7] || <math qid="Q3124">\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb</syntaxhighlight> || <math>\realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0, \realpart@@{(7+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, …]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.12#Ex8 10.12#Ex8] || [[Item:Q3125|<math>\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi</syntaxhighlight> || <math>\realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], …]
| [https://dlmf.nist.gov/10.12#Ex8 10.12#Ex8] || <math qid="Q3125">\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi</syntaxhighlight> || <math>\realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- ..</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], …]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:23, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}}
e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(m+k+1)} > 0}
exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity)
Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 42] Successful [Tested: 42]
10.12#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}}
\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}}
\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2k+1)+k+1)} > 0}
sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)
Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}}
\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}}
\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2k+1)+k+1)} > 0}
sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)*theta), k = 0..infinity)
Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb}
1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ ..
1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb}
\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ ..
Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb}
\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0}
sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- ..
Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb}
\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0, \realpart@@{(7+k+1)} > 0}
(1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ ..
Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi}
\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
(1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- ..
Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data