28.1: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/28.1#Ex15 28.1#Ex15] | | | [https://dlmf.nist.gov/28.1#Ex15 28.1#Ex15] || <math qid="Q8138">\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/28.1#Ex16 28.1#Ex16] | | | [https://dlmf.nist.gov/28.1#Ex16 28.1#Ex16] || <math qid="Q8139">\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/28.1#Ex17 28.1#Ex17] | | | [https://dlmf.nist.gov/28.1#Ex17 28.1#Ex17] || <math qid="Q8140">\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))</syntaxhighlight> || <syntaxhighlight lang=mathematica>S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/28.1#Ex18 28.1#Ex18] | | | [https://dlmf.nist.gov/28.1#Ex18 28.1#Ex18] || <math qid="Q8141">\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]</syntaxhighlight> || Error || Failure || - || Error | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:07, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
28.1#Ex15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}}
\mathrm{Se}_{n}(s,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | S*exp(1)[n]*(s , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
|
S*Subscript[E, n]*(s , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
|
Failure | Failure | Error | Error |
28.1#Ex16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}}
\mathrm{So}_{n}(s,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | So[n](s , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
|
Subscript[So, n][s , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
|
Error | Failure | - | Error |
28.1#Ex17 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}}}
\mathrm{Se}_{n}(c,z) = \dfrac{\Mathieuce{n}@{z}{q}}{\Mathieuce{n}@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | S*exp(1)[n]*(c , z) = (MathieuCE(n, q, z))/(MathieuCE(n, q, 0))
|
S*Subscript[E, n]*(c , z) == Divide[MathieuC[n, q, z],MathieuC[n, q, 0]]
|
Failure | Failure | Error | Error |
28.1#Ex18 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}}}
\mathrm{So}_{n}(c,z) = \dfrac{\Mathieuse{n}@{z}{q}}{\Mathieuse{n}'@{0}{q}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | So[n](c , z) = (MathieuSE(n, q, z))/(diff( MathieuSE(n, q, 0), 0$(1) ))
|
Subscript[So, n][c , z] == Divide[MathieuS[n, q, z],D[MathieuS[n, q, 0], {0, 1}]]
|
Error | Failure | - | Error |