34.1: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/34.1.E1 34.1.E1] || [[Item:Q9709|<math>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 300]
| [https://dlmf.nist.gov/34.1.E1 34.1.E1] || <math qid="Q9709">\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 300]
|}
|}
</div>
</div>

Latest revision as of 12:14, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
34.1.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}}
\ClebschGordan{j_{1}}{m_{1}}{j_{2}}{m_{2}}{j_{3}}{m_{3}} = (-1)^{j_{1}-j_{2}+m_{3}}(2j_{3}+1)^{\frac{1}{2}}\Wignerthreejsym{j_{1}}{j_{2}}{j_{3}}{m_{1}}{m_{2}}{-m_{3}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[j, 3], Subscript[m, 3]}] == (- 1)^(Subscript[j, 1]- Subscript[j, 2]+ Subscript[m, 3])*(2*Subscript[j, 3]+ 1)^(Divide[1,2])* ThreeJSymbol[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {Subscript[m, 1], - Subscript[m, 3]}]
Missing Macro Error Failure - Successful [Tested: 300]