DLMF:13.16.E4 (Q4555): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / constraint
 

( κ - μ ) - 1 2 < 0 𝜅 𝜇 1 2 0 {\displaystyle{\displaystyle\Re(\kappa-\mu)-\tfrac{1}{2}<0}}

\realpart@@{(\kappa-\mu)-\tfrac{1}{2}}<0
Property / constraint: ( κ - μ ) - 1 2 < 0 𝜅 𝜇 1 2 0 {\displaystyle{\displaystyle\Re(\kappa-\mu)-\tfrac{1}{2}<0}} / rank
 
Normal rank

Revision as of 16:49, 30 December 2019

No description defined
Language Label Description Also known as
English
DLMF:13.16.E4
No description defined

    Statements

    1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = z e - 1 2 z Γ ( 1 2 + μ - κ ) 0 e - t t - κ - 1 2 I 2 μ ( 2 z t ) d t , 1 Euler-Gamma 1 2 𝜇 Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 𝑧 superscript 𝑒 1 2 𝑧 Euler-Gamma 1 2 𝜇 𝜅 superscript subscript 0 superscript 𝑒 𝑡 superscript 𝑡 𝜅 1 2 modified-Bessel-first-kind 2 𝜇 2 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=\frac{\sqrt{z}e^{-\frac{1}{2}z}}{\Gamma\left(\frac{1}{2}+\mu-% \kappa\right)}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}I_{2\mu}\left(2% \sqrt{zt}\right)\mathrm{d}t,}}
    0 references
    0 references
    ( κ - μ ) - 1 2 < 0 𝜅 𝜇 1 2 0 {\displaystyle{\displaystyle\Re(\kappa-\mu)-\tfrac{1}{2}<0}}
    0 references