Results of Elliptic Integrals II: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 439: | Line 439: | ||
| [https://dlmf.nist.gov/19.27#Ex6 19.27#Ex6] || [[Item:Q6593|<math>h = (yz)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h = (yz)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h = (y*(x + y*I))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h == (y*(x + y*I))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | | [https://dlmf.nist.gov/19.27#Ex6 19.27#Ex6] || [[Item:Q6593|<math>h = (yz)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h = (yz)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h = (y*(x + y*I))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h == (y*(x + y*I))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.28.E1 19.28.E1] || [[Item:Q6609|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma | | [https://dlmf.nist.gov/19.28.E1 19.28.E1] || [[Item:Q6609|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+1.162857938*I | ||
Test Values: {sigma = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.9984297790*I | Test Values: {sigma = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.9984297790*I | ||
Test Values: {sigma = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {sigma = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.28.E2 19.28.E2] || [[Item:Q6610|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma | | [https://dlmf.nist.gov/19.28.E2 19.28.E2] || [[Item:Q6610|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.28.E3 19.28.E3] || [[Item:Q6611|<math>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma | | [https://dlmf.nist.gov/19.28.E3 19.28.E3] || [[Item:Q6611|<math>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.28.E5 19.28.E5] || [[Item:Q6613|<math>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out | | [https://dlmf.nist.gov/19.28.E5 19.28.E5] || [[Item:Q6613|<math>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out |
Latest revision as of 07:16, 25 May 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.22.E1 | \CarlsonsymellintRF@{0}{x^{2}}{y^{2}} = \CarlsonsymellintRF@{0}{xy}{a^{2}} |
|
0.5*int(1/(sqrt(t+0)*sqrt(t+(x)^(2))*sqrt(t+(y)^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+x*y)*sqrt(t+(a)^(2))), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]/Sqrt[(y)^(2)-0] == EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
|
Aborted | Failure | Skipped - Because timed out | Failed [102 / 108]
Result: Complex[0.1731783664325578, 0.8740191847640398]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[0.4406854652170371, 0.9732684211375591]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -0.5]}
... skip entries to safe data |
19.22.E2 | 2\CarlsonsymellintRG@{0}{x^{2}}{y^{2}} = 4\CarlsonsymellintRG@{0}{xy}{a^{2}}-xy\CarlsonsymellintRF@{0}{xy}{a^{2}} |
|
Error
|
2*Sqrt[(y)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(y)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+Cot[ArcCos[Sqrt[0/(y)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(y)^(2)]]]^2]) == 4*Sqrt[(a)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(a)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+Cot[ArcCos[Sqrt[0/(a)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(a)^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
|
Missing Macro Error | Failure | - | Failed [108 / 108]
Result: Complex[-0.848574889541176, -1.6278775384876862]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Result: -2.356194490192345
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.22.E3 | 2y^{2}\CarlsonsymellintRD@{0}{x^{2}}{y^{2}} = \tfrac{1}{4}(y^{2}-x^{2})\CarlsonsymellintRD@{0}{xy}{a^{2}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}} |
|
Error
|
2*(y)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/(((y)^(2)-(x)^(2))*((y)^(2)-0)^(1/2)) == Divide[1,4]*((y)^(2)- (x)^(2))*3*(EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/(((a)^(2)-x*y)*((a)^(2)-0)^(1/2))+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
|
Missing Macro Error | Failure | - | Failed [108 / 108]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.22.E4 | (p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p) |
|
Error
|
((Subscript[p, +])^(2)- (Subscript[p, -])^(2))*3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 2*((Subscript[p, +])^(2)- (a)^(2))*3*((a)^(2)-0)/((a)^(2)-(Subscript[p, +])^(2))*(EllipticPi[((a)^(2)-(Subscript[p, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p)
|
Missing Macro Error | Failure | - | Error |
19.22.E4 | (p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p) |
|
Error
|
((Subscript[p, -])^(2)- (Subscript[p, +])^(2))*3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 2*((Subscript[p, -])^(2)- (a)^(2))*3*((a)^(2)-0)/((a)^(2)-(Subscript[p, -])^(2))*(EllipticPi[((a)^(2)-(Subscript[p, -])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p)
|
Missing Macro Error | Failure | - | Error |
19.22#Ex1 | p_{+}p_{-} = pa |
|
p[+]*p[-] = p*a |
Subscript[p, +]*Subscript[p, -] == p*a |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex2 | p_{+}^{2}+p_{-}^{2} = p^{2}+xy |
|
(p[+])^(2)+ (p[-])^(2) = (p)^(2)+ x*y |
(Subscript[p, +])^(2)+ (Subscript[p, -])^(2) == (p)^(2)+ x*y |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex3 | p_{+}^{2}-p_{-}^{2} = \sqrt{(p^{2}-x^{2})(p^{2}-y^{2})} |
|
(p[+])^(2)- (p[-])^(2) = sqrt(((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2))) |
(Subscript[p, +])^(2)- (Subscript[p, -])^(2) == Sqrt[((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2))] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex4 | 4(p_{+}^{2}-a^{2}) = (\sqrt{p^{2}-x^{2}}+\sqrt{p^{2}-y^{2}})^{2} |
|
4*((p[+])^(2)- (a)^(2)) = (sqrt((p)^(2)- (x)^(2))+sqrt((p)^(2)- (y)^(2)))^(2) |
4*((Subscript[p, +])^(2)- (a)^(2)) == (Sqrt[(p)^(2)- (x)^(2)]+Sqrt[(p)^(2)- (y)^(2)])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22.E7 | 2p^{2}\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = v_{+}v_{-}\CarlsonsymellintRJ@{0}{xy}{a^{2}}{v^{2}_{+}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}} |
Error
|
2*(p)^(2)* 3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == Subscript[v, +]*Subscript[v, -]*3*((a)^(2)-0)/((a)^(2)-(Subscript[v, +])^(2))*(EllipticPi[((a)^(2)-(Subscript[v, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
|
Missing Macro Error | Failure | - | Error | |
19.22.E8 | \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} = \frac{1}{\AGM@{a_{0}}{g_{0}}} |
|
(2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity) = (1)/(GaussAGM(a[0], g[0]))
|
Error
|
Aborted | Missing Macro Error | Skipped - Because timed out | - |
19.22.E9 | \frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right) = \frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right) |
|
(1)/(GaussAGM(a[0], g[0]))*((a[0])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 0..infinity)) = (1)/(GaussAGM(a[0], g[0]))*((a[1])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 2..infinity))
|
Error
|
Failure | Missing Macro Error | Error | - |
19.22#Ex5 | Q_{0} = 1 |
|
Q[0] = 1 |
Subscript[Q, 0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex6 | Q_{n+1} = \tfrac{1}{2}Q_{n}\frac{a_{n}-g_{n}}{a_{n}+g_{n}} |
|
Q[n + 1] = (1)/(2)*Q[n]*(a[n]- g[n])/(a[n]+ g[n]) |
Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Divide[Subscript[a, n]- Subscript[g, n],Subscript[a, n]+ Subscript[g, n]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex7 | p_{n+1} = \frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}} |
|
p[n + 1] = ((p[n])^(2)+ a[n]*g[n])/(2*p[n]) |
Subscript[p, n + 1] == Divide[(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n],2*Subscript[p, n]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex8 | \varepsilon_{n} = \frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}} |
|
varepsilon[n] = ((p[n])^(2)- a[n]*g[n])/((p[n])^(2)+ a[n]*g[n]) |
Subscript[\[CurlyEpsilon], n] == Divide[(Subscript[p, n])^(2)- Subscript[a, n]*Subscript[g, n],(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex9 | Q_{0} = 1 |
|
Q[0] = 1 |
Subscript[Q, 0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex10 | Q_{n+1} = \tfrac{1}{2}Q_{n}\varepsilon_{n} |
|
Q[n + 1] = (1)/(2)*Q[n]*varepsilon[n] |
Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Subscript[\[CurlyEpsilon], n] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22.E15 | p_{0}^{2} = a_{0}^{2}(q_{0}^{2}+g_{0}^{2})/(q_{0}^{2}+a_{0}^{2}) |
|
(p[0])^(2) = (a[0])^(2)*((q[0])^(2)+ (g[0])^(2))/((q[0])^(2)+ (a[0])^(2)) |
(Subscript[p, 0])^(2) == (Subscript[a, 0])^(2)*((Subscript[q, 0])^(2)+ (Subscript[g, 0])^(2))/((Subscript[q, 0])^(2)+ (Subscript[a, 0])^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex11 | a = (x+y)/2 |
|
a = (x + y)/2 |
a == (x + y)/2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex12 | 2z_{+} = \sqrt{(z+x)(z+y)}+\sqrt{(z-x)(z-y)} |
|
2*x + y*I[+] = sqrt(((x + y*I)+ x)*((x + y*I)+ y))+sqrt(((x + y*I)- x)*((x + y*I)- y)) |
2*Subscript[x + y*I, +] == Sqrt[((x + y*I)+ x)*((x + y*I)+ y)]+Sqrt[((x + y*I)- x)*((x + y*I)- y)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex13 | z_{+}z_{-} = za |
|
z[+]*z[-] = z*a |
Subscript[z, +]*Subscript[z, -] == z*a |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex14 | z_{+}^{2}+z_{-}^{2} = z^{2}+xy |
|
(x + y*I[+])^(2)+(x + y*I[-])^(2) = (x + y*I)^(2)+ x*y |
(Subscript[x + y*I, +])^(2)+(Subscript[x + y*I, -])^(2) == (x + y*I)^(2)+ x*y |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex15 | z_{+}^{2}-z_{-}^{2} = \sqrt{(z^{2}-x^{2})(z^{2}-y^{2})} |
|
(x + y*I[+])^(2)-(x + y*I[-])^(2) = sqrt(((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2))) |
(Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2) == Sqrt[((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2))] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex16 | 4(z_{+}^{2}-a^{2}) = (\sqrt{z^{2}-x^{2}}+\sqrt{z^{2}-y^{2}})^{2} |
|
4*((x + y*I[+])^(2)- (a)^(2)) = (sqrt((x + y*I)^(2)- (x)^(2))+sqrt((x + y*I)^(2)- (y)^(2)))^(2) |
4*((Subscript[x + y*I, +])^(2)- (a)^(2)) == (Sqrt[(x + y*I)^(2)- (x)^(2)]+Sqrt[(x + y*I)^(2)- (y)^(2)])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22.E18 | \CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}} = \CarlsonsymellintRF@{a^{2}}{z_{-}^{2}}{z_{+}^{2}} |
|
0.5*int(1/(sqrt(t+(x)^(2))*sqrt(t+(y)^(2))*sqrt(t+(x + y*I)^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(x + y*I[-])^(2))*sqrt(t+(x + y*I[+])^(2))), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)] == EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))]/Sqrt[(Subscript[x + y*I, +])^(2)-(a)^(2)]
|
Error | Failure | - | Error |
19.22.E19 | (z_{+}^{2}-z_{-}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{+}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{-}^{2}}{z_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z) |
|
Error
|
((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))*3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) == 2*((Subscript[x + y*I, +])^(2)- (a)^(2))*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))])/(((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))*((Subscript[x + y*I, +])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I))
|
Missing Macro Error | Failure | - | Error |
19.22.E19 | (z_{-}^{2}-z_{+}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{-}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z) |
|
Error
|
((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))*3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) == 2*((Subscript[x + y*I, -])^(2)- (a)^(2))*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/(((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))*((Subscript[x + y*I, -])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I))
|
Missing Macro Error | Failure | - | Error |
19.22.E20 | (p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}} |
|
Error
|
((Subscript[p, +])^(2)- (Subscript[p, -])^(2))*3*((x + y*I)^(2)-(x)^(2))/((x + y*I)^(2)-(p)^(2))*(EllipticPi[((x + y*I)^(2)-(p)^(2))/((x + y*I)^(2)-(x)^(2)),ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/Sqrt[(x + y*I)^(2)-(x)^(2)] == 2*((Subscript[p, +])^(2)- (a)^(2))*3*((Subscript[x + y*I, -])^(2)-(a)^(2))/((Subscript[x + y*I, -])^(2)-(Subscript[p, +])^(2))*(EllipticPi[((Subscript[x + y*I, -])^(2)-(Subscript[p, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))]
|
Missing Macro Error | Failure | - | Error |
19.22.E20 | (p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}} |
|
Error
|
((Subscript[p, -])^(2)- (Subscript[p, +])^(2))*3*((x + y*I)^(2)-(x)^(2))/((x + y*I)^(2)-(p)^(2))*(EllipticPi[((x + y*I)^(2)-(p)^(2))/((x + y*I)^(2)-(x)^(2)),ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/Sqrt[(x + y*I)^(2)-(x)^(2)] == 2*((Subscript[p, -])^(2)- (a)^(2))*3*((Subscript[x + y*I, -])^(2)-(a)^(2))/((Subscript[x + y*I, -])^(2)-(Subscript[p, -])^(2))*(EllipticPi[((Subscript[x + y*I, -])^(2)-(Subscript[p, -])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))]
|
Missing Macro Error | Failure | - | Error |
19.22.E21 | 2\CarlsonsymellintRG@{x^{2}}{y^{2}}{z^{2}} = 4\CarlsonsymellintRG@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-xy\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}-z |
|
Error
|
2*Sqrt[(x + y*I)^(2)-(x)^(2)]*(EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+(Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]^2]) == 4*Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]*(EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]+(Cot[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]+Cot[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]-(x + y*I)
|
Missing Macro Error | Failure | - | Error |
19.22.E22 | \CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay} |
|
Error
|
1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)]
|
Missing Macro Error | Failure | - | Failed [108 / 108]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.22#Ex17 | x+y = 2a |
|
x + y = 2*a |
x + y == 2*a |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex18 | x-y = (\ifrac{2}{a})\sqrt{(a^{2}-z_{+}^{2})(a^{2}-z_{-}^{2})} |
|
x - y = ((2)/(a))*sqrt(((a)^(2)-(x + y*I[+])^(2))*((a)^(2)-(x + y*I[-])^(2))) |
x - y == (Divide[2,a])*Sqrt[((a)^(2)-(Subscript[x + y*I, +])^(2))*((a)^(2)-(Subscript[x + y*I, -])^(2))] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.22#Ex19 | z = \ifrac{z_{+}z_{-}}{a} |
|
z = (z[+]*z[-])/(a) |
z == Divide[Subscript[z, +]*Subscript[z, -],a] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.23.E1 | \CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta} |
|
0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int((y*(cos(theta))^(2)+(x + y*I)*(sin(theta))^(2))^(- 1/2), theta = 0..Pi/2)
|
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Aborted | Failure | Skipped - Because timed out | Failed [18 / 18]
Result: Complex[0.8397393007192011, 1.792316631638506]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[-1.057179647328743, -0.8381019542468571]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.23.E2 | \CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta} |
|
Error
|
Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == Divide[1,2]*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Plus[Complex[0.5014070071339144, -0.6068932953779227], Times[Complex[1.345607733249115, -0.5573689727459014], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.23.E3 | \CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta} |
|
Error
|
3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) == 3*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 3/2)* (Sin[\[Theta]])^(2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E4 | \CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} |
|
Error
|
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E4 | \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t} |
|
Error
|
Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[2,Pi]*Integrate[1/Sqrt[x + y*I]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(Cosh[t])^(2))/(x + y*I)], {t, 0, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.23.E5 | \CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta} |
Error
|
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[2,Pi]*Integrate[1/Sqrt[y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.23.E6 | 4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}} |
|
4*Pi*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int(int((sin(theta))/((x*(sin(theta))^(2)* (cos(phi))^(2)+ y*(sin(theta))^(2)* (sin(phi))^(2)+(x + y*I)*(cos(theta))^(2))^(1/2)), theta = 0..Pi), phi = 0..2*Pi)
|
4*Pi*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Integrate[Integrate[Divide[Sin[\[Theta]],(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(1/2)], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
|
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.23.E7 | \CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t} |
|
Error
|
Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4]*Integrate[Divide[1,Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]]*(Divide[x,t + x]+Divide[y,t + y]+Divide[x + y*I,t +(x + y*I)])*t, {t, 0, Infinity}, GenerateConditions->None] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.24.E1 | \ln@@{4} \leq \sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}} |
ln(4) <= sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I))) |
Log[4] <= Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]] |
Error | Failure | - | Failed [9 / 9]
Result: LessEqual[1.3862943611198906, Complex[0.5672499697282593, -1.7874177081206242]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[1.3862943611198906, Complex[0.6277320470267476, -0.9602476282953896]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E1 | \sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}} \leq \tfrac{1}{2}\pi |
sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I))) <= (1)/(2)*Pi |
Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]] <= Divide[1,2]*Pi |
Error | Failure | - | Failed [9 / 9]
Result: LessEqual[Complex[0.5672499697282593, -1.7874177081206242], 1.5707963267948966]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[Complex[0.6277320470267476, -0.9602476282953896], 1.5707963267948966]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E2 | \tfrac{1}{2} \leq z^{-1/2}\CarlsonsymellintRG@{0}{y}{z} |
Error |
Divide[1,2] <= (x + y*I)^(- 1/2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) |
Missing Macro Error | Failure | - | Failed [9 / 9]
Result: LessEqual[0.5, Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[0.5, Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E2 | z^{-1/2}\CarlsonsymellintRG@{0}{y}{z} \leq \tfrac{1}{4}\pi |
Error |
(x + y*I)^(- 1/2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) <= Divide[1,4]*Pi |
Missing Macro Error | Failure | - | Failed [9 / 9]
Result: LessEqual[Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E3 | \left(\frac{y^{3/2}+z^{3/2}}{2}\right)^{2/3} \leq \frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}} |
Error |
(Divide[(y)^(3/2)+(x + y*I)^(3/2),2])^(2/3) <= Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2]) |
Missing Macro Error | Failure | - | Failed [9 / 9]
Result: LessEqual[Complex[1.4250443092558214, 0.7875512141675095], Complex[2.850438542245679, 1.5730146161508307]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[Complex[1.0588191704631045, 0.29794136993360365], Complex[2.118851869395612, 0.5983245902184247]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E3 | \frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}} \leq \left(\frac{y^{2}+z^{2}}{2}\right)^{1/2} |
Error |
Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2]) <= (Divide[(y)^(2)+(x + y*I)^(2),2])^(1/2) |
Missing Macro Error | Failure | - | Failed [9 / 9]
Result: LessEqual[Complex[2.850438542245679, 1.5730146161508307], Complex[1.3491805799609005, 0.8338394553771318]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} Result: LessEqual[Complex[2.118851869395612, 0.5983245902184247], Complex[1.112897508375995, 0.3369582528288897]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.24.E4 | \frac{2}{\sqrt{p}}(2yz+yp+zp)^{-1/2} \leq \frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p} |
|
Error |
Divide[2,Sqrt[p]]*(2*y*(x + y*I)+ y*p +(x + y*I)*p)^(- 1/2) <= Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: LessEqual[Complex[0.13508456755677706, -1.1829936015765863], Complex[-0.3213270063391195, -0.3051912044731223]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[0.7797231369520263, -0.6247258696161743], Complex[-0.6706782382611747, 0.54526856836685]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E4 | \frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p} \leq (yzp^{2})^{-3/8} |
|
Error |
Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] <= (y*(x + y*I)*(p)^(2))^(- 3/8) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: LessEqual[Complex[-0.3213270063391195, -0.3051912044731223], Complex[0.5136265917030035, 0.9609277658721954]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[-0.6706782382611747, 0.54526856836685], Complex[0.8422602311268256, -0.6912251080442312]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E5 | \frac{1}{a_{n}} \leq \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} |
|
(1)/(a[n]) <= (2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity) |
Divide[1,Subscript[a, n]] <= Divide[2,Pi]*EllipticF[ArcCos[Sqrt[0/(Subscript[g, 0])^(2)]],((Subscript[g, 0])^(2)-(Subscript[a, 0])^(2))/((Subscript[g, 0])^(2)-0)]/Sqrt[(Subscript[g, 0])^(2)-0] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[-0.4999999999999998, -0.8660254037844387], g], Rational[-1, 2]], EllipticK[Times[Complex[-1.9999999999999991, 3.464101615137755], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[-0.12499999999999994, -0.21650635094610968], g]], Power[g, -1]]]]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.24.E5 | \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} \leq \frac{1}{g_{n}} |
|
(2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity) <= (1)/(g[n]) |
Divide[2,Pi]*EllipticF[ArcCos[Sqrt[0/(Subscript[g, 0])^(2)]],((Subscript[g, 0])^(2)-(Subscript[a, 0])^(2))/((Subscript[g, 0])^(2)-0)]/Sqrt[(Subscript[g, 0])^(2)-0] <= Divide[1,Subscript[g, n]] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]], Complex[1.7320508075688774, -0.9999999999999999]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]], Complex[-0.9999999999999996, -1.7320508075688774]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.24#Ex1 | a_{n+1} = (a_{n}+g_{n})/2 |
|
a[n + 1] = (a[n]+ g[n])/2 |
Subscript[a, n + 1] == (Subscript[a, n]+ Subscript[g, n])/2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.24#Ex2 | g_{n+1} = \sqrt{a_{n}g_{n}} |
|
g[n + 1] = sqrt(a[n]*g[n]) |
Subscript[g, n + 1] == Sqrt[Subscript[a, n]*Subscript[g, n]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.24.E7 | L(a,b) = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}} |
|
Error |
L[a , b] == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) |
Missing Macro Error | Failure | - | Error |
19.24#Ex3 | \CarlsonsymellintRF@{x}{y}{0}\CarlsonsymellintRG@{x}{y}{0} > \tfrac{1}{8}\pi^{2} |
|
Error |
EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Divide[1,8]*(Pi)^(2) |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Greater[Indeterminate, 1.2337005501361697]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Greater[Indeterminate, 1.2337005501361697]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24#Ex4 | \CarlsonsymellintRF@{x}{y}{0}+2\CarlsonsymellintRG@{x}{y}{0} > \pi |
|
Error |
EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]+ 2*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Pi |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Greater[Indeterminate, 3.141592653589793]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Greater[Indeterminate, 3.141592653589793]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E9 | \frac{1}{2}\,g_{1}^{2} \leq \frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}} |
|
Error |
Divide[1,2]*(Subscript[g, 1])^(2) <= Divide[Sqrt[0-(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]/Sqrt[0-(Subscript[a, 0])^(2)]] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: LessEqual[Complex[0.06250000000000001, 0.10825317547305482], Indeterminate]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Complex[-0.06249999999999997, -0.10825317547305484], Indeterminate]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.24.E9 | \frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}} \leq \frac{1}{2}\,a_{1}^{2} |
|
Error |
Divide[Sqrt[0-(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]/Sqrt[0-(Subscript[a, 0])^(2)]] <= Divide[1,2]*(Subscript[a, 1])^(2) |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.24.E10 | \frac{3}{\sqrt{x}+\sqrt{y}+\sqrt{z}} \leq \CarlsonsymellintRF@{x}{y}{z} |
|
(3)/(sqrt(x)+sqrt(y)+sqrt(x + y*I)) <= 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) |
Divide[3,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] |
Aborted | Failure | Error | Failed [18 / 18]
Result: LessEqual[Complex[1.0934408788539995, -0.2839050517129825], Complex[-0.16214470973156064, 0.6784437678906974]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[0.7738030002696183, -0.11364498174072818], Complex[-0.28823404661462, -0.7809212115368181]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E10 | \CarlsonsymellintRF@{x}{y}{z} \leq \frac{1}{(xyz)^{1/6}} |
|
0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) <= (1)/((x*y*(x + y*I))^(1/6)) |
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= Divide[1,(x*y*(x + y*I))^(1/6)] |
Aborted | Failure | Error | Failed [18 / 18]
Result: LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7120063770987297, -0.29492269789042613]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.7640769591692358, -0.10059264002361257]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E11 | \left(\frac{5}{\sqrt{x}+\sqrt{y}+\sqrt{z}+2\sqrt{p}}\right)^{3} \leq \CarlsonsymellintRJ@{x}{y}{z}{p} |
|
Error |
(Divide[5,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]+ 2*Sqrt[p]])^(3) <= 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: LessEqual[Complex[1.3310335634294785, -1.2911719373315522], Complex[-0.2876927312707393, -0.327259429717868]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[0.7477899794343462, -0.4392695700678081], Complex[-0.36602768453446033, 0.5058947820270108]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E11 | \CarlsonsymellintRJ@{x}{y}{z}{p} \leq (xyzp^{2})^{-3/10} |
|
Error |
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] <= (x*y*(x + y*I)*(p)^(2))^(- 3/10) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: LessEqual[Complex[-0.2876927312707393, -0.327259429717868], Complex[0.6159220908806466, 0.7211521128667333]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[-0.36602768453446033, 0.5058947820270108], Complex[0.8086249764673956, -0.49552602288885395]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E12 | \tfrac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z}) \leq \CarlsonsymellintRG@{x}{y}{z} |
|
Error |
Divide[1,3]*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]) <= Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: LessEqual[Complex[0.8567842015469013, 0.22245863288189585], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[1.2650324920107643, 0.1857896575819671], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24#Ex7 | \CarlsonsymellintRF@{x}{y}{z}\CarlsonsymellintRG@{x}{y}{z} > 1 |
|
Error |
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 1 |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Greater[Times[Complex[0.44712810031579164, 0.7279709757493625], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Greater[Times[Complex[0.42667960094115687, -0.925915614148855], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24#Ex8 | \CarlsonsymellintRF@{x}{y}{z}+\CarlsonsymellintRG@{x}{y}{z} > 2 |
|
Error |
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]+ Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 2 |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Greater[Plus[Complex[-0.16214470973156064, 0.6784437678906974], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Greater[Plus[Complex[-0.28823404661462, -0.7809212115368181], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.24.E15 | \CarlsonellintRC@{x}{\tfrac{1}{2}(y+z)} \leq \CarlsonsymellintRF@{x}{y}{z} |
Error |
1/Sqrt[Divide[1,2]*(y +(x + y*I))]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Divide[1,2]*(y +(x + y*I)))] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: LessEqual[Complex[0.9580693887321644, 0.49152363500125495], Complex[-0.16214470973156064, 0.6784437678906974]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[0.7805167095081702, -0.12346643314922054], Complex[-0.28823404661462, -0.7809212115368181]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data | |
19.24.E15 | \CarlsonsymellintRF@{x}{y}{z} \leq \CarlsonellintRC@{x}{\sqrt{yz}} |
Error |
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= 1/Sqrt[Sqrt[y*(x + y*I)]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Sqrt[y*(x + y*I)])] |
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7308447207533646, -0.31118718328917466]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.765857524311696, -0.1031964554328576]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data | |
19.25#Ex1 | \compellintKk@{k} = \CarlsonsymellintRF@{0}{{k^{\prime}}^{2}}{1} |
|
EllipticK(k) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - (k)^(2))*sqrt(t+1)), t = 0..infinity) |
EllipticK[(k)^2] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]/Sqrt[1-0] |
Failure | Failure | Error | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]} Result: Complex[-0.16657773258291342, -1.0782578237498217]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25#Ex2 | \compellintEk@{k} = 2\CarlsonsymellintRG@{0}{{k^{\prime}}^{2}}{1} |
|
Error |
EllipticE[(k)^2] == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: -2.820197789027711
Test Values: {Rule[k, 1]} Result: Complex[-4.864068276731299, 1.343854231387098]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25#Ex3 | \compellintEk@{k} = \tfrac{1}{3}{k^{\prime}}^{2}\left(\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1}+\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}}\right) |
|
Error |
EllipticE[(k)^2] == Divide[1,3]*1 - (k)^(2)*(3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2))) |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]} Result: Complex[7.885081986624734, -2.293856789051463]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25#Ex4 | \compellintKk@{k}-\compellintEk@{k} = k^{2}\compellintDk@{k} |
|
EllipticK(k)- EllipticE(k) = (k)^(2)* (EllipticK(k) - EllipticE(k))/(k)^2 |
EllipticK[(k)^2]- EllipticE[(k)^2] == (k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] |
Successful | Failure | - | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]} Result: Complex[0.3274322182097533, -1.81658404135269]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25#Ex4 | k^{2}\compellintDk@{k} = \tfrac{1}{3}k^{2}\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1} |
|
Error |
(k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2)) |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]} Result: Complex[-1.5165865988698335, -0.6055280137842299]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25#Ex5 | \compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k} = \tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}} |
|
Error |
EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2] == Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2)) |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]} Result: Complex[-2.3636107378197124, 2.0191745059478237]
Test Values: {Rule[k, 2]} ... skip entries to safe data |
19.25.E2 | \compellintPik@{\alpha^{2}}{k}-\compellintKk@{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{0}{{k^{\prime}}^{2}}{1}{1-\alpha^{2}} |
|
Error |
EllipticPi[\[Alpha]^(2), (k)^2]- EllipticK[(k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(1-0)/(1-1 - \[Alpha]^(2))*(EllipticPi[(1-1 - \[Alpha]^(2))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0] |
Missing Macro Error | Failure | - | Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]} Result: Complex[-1.5241433161083033, 0.5547659663605348]
Test Values: {Rule[k, 2], Rule[α, 1.5]} ... skip entries to safe data |
19.25.E4 | \compellintPik@{\alpha^{2}}{k} = -\tfrac{1}{3}(k^{2}/\alpha^{2})\CarlsonsymellintRJ@{0}{1-k^{2}}{1}{1-(k^{2}/\alpha^{2})} |
Error |
EllipticPi[\[Alpha]^(2), (k)^2] == -Divide[1,3]*((k)^(2)/\[Alpha]^(2))*3*(1-0)/(1-1 -((k)^(2)/\[Alpha]^(2)))*(EllipticPi[(1-1 -((k)^(2)/\[Alpha]^(2)))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0] |
Missing Macro Error | Failure | - | Skip - No test values generated | |
19.25.E5 | \incellintFk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c} |
|
EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity) |
EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1] |
Failure | Failure | Failed [180 / 180] Result: Float(undefined)+Float(undefined)*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1} Result: 3.854689052+3.461698034*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [180 / 180]
Result: Complex[2.0026000841930385, 1.2187088711714384]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.4748265293714395, 0.7583435972865697]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E6 | \pderiv{\incellintFk@{\phi}{k}}{k} = \tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c}{c-k^{2}} |
|
Error |
D[EllipticF[\[Phi], (k)^2], k] == Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2)) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Indeterminate
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.4045300788217367, 0.4404710702025501]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E7 | \incellintEk@{\phi}{k} = 2\CarlsonsymellintRG@{c-1}{c-k^{2}}{c}-(c-1)\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\sqrt{(c-1)(c-k^{2})/c} |
|
Error |
EllipticE[\[Phi], (k)^2] == 2*Sqrt[c-c - 1]*(EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+(Cot[ArcCos[Sqrt[c - 1/c]]])^2*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+Cot[ArcCos[Sqrt[c - 1/c]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[c - 1/c]]]^2])-(c - 1)*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Sqrt[(c - 1)*(c - (k)^(2))/c] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[5.787775994567906, 4.022803158659452]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[6.805668366738806, 3.968311704298834]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E9 | \incellintEk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c} |
|
Error |
EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[3.5743811704478246, 0.7698502565730785]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[3.9424508382496875, -1.017653751864599]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E10 | \incellintEk@{\phi}{k} = {k^{\prime}}^{2}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}+\tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-1}{c}{c-k^{2}}+k^{2}\sqrt{(c-1)/(c(c-k^{2}))} |
Error |
EllipticE[\[Phi], (k)^2] == 1 - (k)^(2)*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]+Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2))+ (k)^(2)*Sqrt[(c - 1)/(c*(c - (k)^(2)))] |
Missing Macro Error | Failure | - | Failed [20 / 20]
Result: Complex[-1.0687219916023158, 0.8637282710955538]
Test Values: {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.7724732696890155, 1.0672164584507502]
Test Values: {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
19.25.E11 | \incellintEk@{\phi}{k} = -\tfrac{1}{3}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-k^{2}}{c}{c-1}+\sqrt{(c-k^{2})/(c(c-1))} |
Error |
EllipticE[\[Phi], (k)^2] == -Divide[1,3]*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))]-EllipticE[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))])/((c - 1-c)*(c - 1-c - (k)^(2))^(1/2))+Sqrt[(c - (k)^(2))/(c*(c - 1))] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[3.6312701919621486, -1.3602272606820804]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.7754142926962797, -0.6029933704091625]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data | |
19.25.E12 | \pderiv{\incellintEk@{\phi}{k}}{k} = -\tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c-k^{2}}{c} |
|
Error |
D[EllipticE[\[Phi], (k)^2], k] == -Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[1.571781086254786, -0.44885861459835996]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.233812154439124, -0.8879986745755843]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E13 | \incellintDk@{\phi}{k} = \tfrac{1}{3}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c} |
|
Error |
Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[-1.571781086254786, 0.44885861459835996]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.6083725296430629, 0.41279951787826946]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E14 | \incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\alpha^{2}} |
|
Error |
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(c-c - 1)/(c-c - \[Alpha]^(2))*(EllipticPi[(c-c - \[Alpha]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-0.9803588804354156, -0.9579910370435353]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.6164275583611891, -0.384238714210872]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E16 | \incellintPik@{\phi}{\alpha^{2}}{k} = -\tfrac{1}{3}\omega^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\omega^{2}}+\sqrt{\frac{(c-1)(c-k^{2})}{(\alpha^{2}-1)(1-\omega^{2})}}\*\CarlsonellintRC@{c(\alpha^{2}-1)(1-\omega^{2})}{(\alpha^{2}-c)(c-\omega^{2})} |
Error |
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == -Divide[1,3]*\[Omega]^(2)* 3*(c-c - 1)/(c-c - \[Omega]^(2))*(EllipticPi[(c-c - \[Omega]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1]+Sqrt[Divide[(c - 1)*(c - (k)^(2)),(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2))]]* 1/Sqrt[(\[Alpha]^(2)- c)*(c - \[Omega]^(2))]*Hypergeometric2F1[1/2,1/2,3/2,1-(c*(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2)))/((\[Alpha]^(2)- c)*(c - \[Omega]^(2)))] |
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Complex[-0.11631142199526823, 0.9703799109463437]
Test Values: {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, -2]} Result: Complex[-0.11631142199526823, 0.9703799109463437]
Test Values: {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, 2]} ... skip entries to safe data | |
19.25.E17 | \incellintFk@{\phi}{k} = \CarlsonsymellintRF@{x}{y}{z} |
|
EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) |
EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] |
Aborted | Failure | Failed [300 / 300] Result: 2.547570015-.6488873983*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1} Result: 2.209888328-.6080126261*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5939484671297026, -0.40701440305540804]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.5587134153531784, -0.34669285510288844]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E18 | (x,y,z) = (c-1,c-k^{2},c) |
|
(x , y ,(x + y*I)) = (c - 1 , c - (k)^(2), c) |
(x , y ,(x + y*I)) == (c - 1 , c - (k)^(2), c) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25#Ex6 | \phi = \acos@@{\sqrt{\ifrac{x}{z}}} |
|
phi = arccos(sqrt((x)/(x + y*I))) |
\[Phi] == ArcCos[Sqrt[Divide[x,x + y*I]]] |
Failure | Failure | Failed [180 / 180] Result: .806272406e-1+.9406867936*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2} Result: .806272406e-1+.593132064e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = 3/2} ... skip entries to safe data |
Failed [180 / 180]
Result: Complex[-0.35238546150522904, 0.6906867935097715]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.0353981633974483, 0.8736994954019909]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.25#Ex6 | \acos@@{\sqrt{\ifrac{x}{z}}} = \asin@@{\sqrt{\ifrac{(z-x)}{z}}} |
|
arccos(sqrt((x)/(x + y*I))) = arcsin(sqrt(((x + y*I)- x)/(x + y*I))) |
ArcCos[Sqrt[Divide[x,x + y*I]]] == ArcSin[Sqrt[Divide[(x + y*I)- x,x + y*I]]] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
19.25#Ex7 | k = \sqrt{\frac{z-y}{z-x}} |
|
k = sqrt(((x + y*I)- y)/((x + y*I)- x)) |
k == Sqrt[Divide[(x + y*I)- y,(x + y*I)- x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25#Ex8 | \alpha^{2} = \frac{z-p}{z-x} |
|
(alpha)^(2) = ((x + y*I)- p)/((x + y*I)- x) |
\[Alpha]^(2) == Divide[(x + y*I)- p,(x + y*I)- x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25.E24 | (z-x)^{1/2}\CarlsonsymellintRF@{x}{y}{z} = \incellintFk@{\phi}{k} |
|
((x + y*I)- x)^(1/2)* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = EllipticF(sin(phi), k) |
((x + y*I)- x)^(1/2)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == EllipticF[\[Phi], (k)^2] |
Aborted | Failure | Failed [300 / 300] Result: -1.167656510+1.966567574*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1} Result: -.8299748231+1.925692802*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.015324342917649614, 0.4565416109140732]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.050559394694173865, 0.3962200629615536]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E25 | (z-x)^{3/2}\CarlsonsymellintRD@{x}{y}{z} = (3/k^{2})(\incellintFk@{\phi}{k}-\incellintEk@{\phi}{k}) |
|
Error |
((x + y*I)- x)^(3/2)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == (3/(k)^(2))*(EllipticF[\[Phi], (k)^2]- EllipticE[\[Phi], (k)^2]) |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-0.9041684186949032, 0.18989946051507803]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.8729885067685752, 0.19149534336253457]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E26 | (z-x)^{3/2}\CarlsonsymellintRJ@{x}{y}{z}{p} = (3/\alpha^{2}){(\incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k})} |
|
Error |
((x + y*I)- x)^(3/2)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == (3/\[Alpha]^(2))*(EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2]) |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-8.905365206673954*^-4, 0.6653826564189609]
Test Values: {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.030816807002235325, 0.6810951786851601]
Test Values: {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25.E27 | 2(z-x)^{-1/2}\CarlsonsymellintRG@{x}{y}{z} = \incellintEk@{\phi}{k}+(\cot@@{\phi})^{2}\incellintFk@{\phi}{k}+(\cot@@{\phi})\sqrt{1-k^{2}\sin^{2}@@{\phi}} |
|
Error |
2*((x + y*I)- x)^(- 1/2)* Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == EllipticE[\[Phi], (k)^2]+(Cot[\[Phi]])^(2)* EllipticF[\[Phi], (k)^2]+(Cot[\[Phi]])*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-1.8997799949200251, -0.4031557744461449]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-3.0701379688219372, -2.1411109504853227]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.25#Ex9 | \Delta(\mathrm{n,d}) = k^{2} |
|
Delta(n , d) = (k)^(2) |
\[CapitalDelta][n , d] == (k)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25#Ex10 | \Delta(\mathrm{d,c}) = {k^{\prime}}^{2} |
|
Delta(d , c) = 1 - (k)^(2) |
\[CapitalDelta][d , c] == 1 - (k)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25#Ex11 | \Delta(\mathrm{n,c}) = 1 |
|
Delta(n , c) = 1 |
\[CapitalDelta][n , c] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.25.E30 | \Jacobiamk@{u}{k} = \CarlsonellintRC@{\Jacobiellcsk^{2}@{u}{k}}{\Jacobiellnsk^{2}@{u}{k}} |
|
Error |
JacobiAmplitude[u, Power[k, 2]] == 1/Sqrt[(JacobiNS[u, (k)^2])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((JacobiCS[u, (k)^2])^(2))/((JacobiNS[u, (k)^2])^(2))] |
Missing Macro Error | Aborted | - | Failed [18 / 30]
Result: Complex[-0.5428587296705786, 0.8636075147962846]
Test Values: {Rule[k, 1], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} Result: Complex[-0.6732377468613371, 0.8494366739388763]
Test Values: {Rule[k, 2], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.25.E31 | u = \CarlsonsymellintRF@{\genJacobiellk{p}{s}^{2}@{u}{k}}{\genJacobiellk{q}{s}^{2}@{u}{k}}{\genJacobiellk{r}{s}^{2}@{u}{k}} |
|
u = 0.5*int(1/(sqrt(t+genJacobiellk(p)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(q)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(r)*(s)^(2)* u*k)), t = 0..infinity) |
u == EllipticF[ArcCos[Sqrt[genJacobiellk[p]*(s)^(2)* u*k/genJacobiellk[r]*(s)^(2)* u*k]],(genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[q]*(s)^(2)* u*k)/(genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[p]*(s)^(2)* u*k)]/Sqrt[genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[p]*(s)^(2)* u*k] |
Aborted | Failure | Error | Failed [300 / 300]
Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.78471422644353, -0.9906313764027224], Power[Times[Complex[-1.7426678688862403, -1.3308892896287465], genJacobiellk], Rational[-1, 2]]]]
Test Values: {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.3766936106342851, -1.225388931598258], Power[Times[Complex[-3.4853357377724805, -2.661778579257493], genJacobiellk], Rational[-1, 2]]]]
Test Values: {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.26.E1 | \CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z} |
|
0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)+ 0.5*int(1/(sqrt(t+x + mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[0.6992255245511445, -1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.2162365888422955, -0.7585970772170993]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E2 | x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2} |
|
x + mu = (lambda)^(- 2)*(sqrt((x + lambda)*y*(x + y*I))+sqrt(x*(y + lambda)*((x + y*I)+ lambda)))^(2) |
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[(x + \[Lambda])*y*(x + y*I)]+Sqrt[x*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex1 | (\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda) |
|
(xi , eta , zeta) = (x + lambda , y + lambda ,(x + y*I)+ lambda) |
(\[Xi], \[Eta], \[Zeta]) == (x + \[Lambda], y + \[Lambda],(x + y*I)+ \[Lambda]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E5 | \mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z |
|
mu = (lambda)^(- 2)*(sqrt(x*y*(x + y*I))+sqrt((x + lambda)*(y + lambda)*((x + y*I)+ lambda)))^(2)- lambda - x - y -(x + y*I) |
\[Mu] == \[Lambda]^(- 2)*(Sqrt[x*y*(x + y*I)]+Sqrt[(x + \[Lambda])*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)- \[Lambda]- x - y -(x + y*I) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E6 | (\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z) |
|
(lambda*mu - x*y - x*(x + y*I)- y*(x + y*I))^(2) = 4*x*y*(x + y*I)*(lambda + mu + x + y +(x + y*I)) |
(\[Lambda]*\[Mu]- x*y - x*(x + y*I)- y*(x + y*I))^(2) == 4*x*y*(x + y*I)*(\[Lambda]+ \[Mu]+ x + y +(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E7 | \CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}} |
|
Error |
3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/(((x + y*I)+ \[Mu]-y + \[Mu])*((x + y*I)+ \[Mu]-x + \[Mu])^(1/2)) == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))-Divide[3,Sqrt[(x + y*I)*((x + y*I)+ \[Lambda])*((x + y*I)+ \[Mu])]] |
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Complex[-0.4984590390126629, 1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.01924185171185039, 1.9974068077017313]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E8 | 2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z} |
|
Error |
2*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])+ 2*Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]*(EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+(Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]^2]) == 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])+ \[Lambda]*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ \[Mu]*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]+Sqrt[\[Lambda]+ \[Mu]+ x + y +(x + y*I)] |
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Plus[Complex[-2.0898920996046204, 0.6803615706262403], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[4.184639587172815, -1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.7841147574434748, -1.6170454393246465], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[2.0923197935864075, -0.9558768244369737], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E9 | \CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma} |
|
Error |
3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*((x + y*I)+ \[Mu]-x + \[Mu])/((x + y*I)+ \[Mu]-p + \[Mu])*(EllipticPi[((x + y*I)+ \[Mu]-p + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu]),ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[6.482970499990588, -0.8807575715831795]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[7.020988185402777, -1.8389880807014276]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26#Ex3 | \gamma = p(p+\lambda)(p+\mu) |
|
gamma = p*(p + lambda)*(p + mu) |
\[Gamma] == p*(p + \[Lambda])*(p + \[Mu]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex4 | \delta = (p-x)(p-y)(p-z) |
|
delta = (p - x)*(p - y)*(p -(x + y*I)) |
\[Delta] == (p - x)*(p - y)*(p -(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E11 | \CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y} |
|
Error |
1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]+ 1/Sqrt[y + \[Mu]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Mu])/(y + \[Mu])] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[1.7722794006718585, -0.740880873447254]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.579678795390187, -0.7154745309495683]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26#Ex5 | x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2} |
|
x + mu = (lambda)^(- 2)*(sqrt(x + lambda)*y +sqrt(x)*(y + lambda))^(2) |
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[x + \[Lambda]]*y +Sqrt[x]*(y + \[Lambda]))^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex6 | y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2} |
|
y + mu = (y*(y + lambda)/(lambda)^(2))*(sqrt(x)+sqrt(x + lambda))^(2) |
y + \[Mu] == (y*(y + \[Lambda])/\[Lambda]^(2))*(Sqrt[x]+Sqrt[x + \[Lambda]])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E13 | \CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta} |
Error |
1/Sqrt[\[Alpha]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Alpha]^(2)- \[Theta])]+ 1/Sqrt[\[Beta]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta]^(2))/(\[Beta]^(2)- \[Theta])] == 1/Sqrt[\[Sigma]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Sigma]^(2))/(\[Sigma]^(2)- \[Theta])] |
Missing Macro Error | Aborted | - | Successful [Tested: 2] | |
19.26.E14 | (p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta} |
Error |
(p - y)*1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]+(q - y)*1/Sqrt[q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(q)] == (\[Eta]- \[Xi])*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-3.0971074607887266, 1.6817857583573725]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
19.26#Ex7 | (p-x)(q-x) = (y-x)^{2} |
|
(p - x)*(q - x) = (y - x)^(2) |
(p - x)*(q - x) == (y - x)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex8 | \xi = y^{2}/x |
|
xi = (y)^(2)/x |
\[Xi] == (y)^(2)/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex9 | \eta = pq/x |
|
eta = p*q/x |
\[Eta] == p*q/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex10 | \eta-\xi = p+q-2y |
|
eta - xi = p + q - 2*y |
\[Eta]- \[Xi] == p + q - 2*y |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E16 | \CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},} |
0.5*int(1/(sqrt(t+lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)- 0.5*int(1/(sqrt(t+mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[\[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-\[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-\[Lambda]] == EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]- EllipticF[ArcCos[Sqrt[\[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-\[Mu])]/Sqrt[(x + y*I)+ \[Mu]-\[Mu]] |
Error | Failure | - | Error | |
19.26.E17 | \sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2 |
Error |
Sqrt[\[Alpha]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta])/(\[Alpha]+ \[Beta])]+Sqrt[\[Beta]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha])/(\[Alpha]+ \[Beta])] == Pi/2 |
Missing Macro Error | Failure | - | Successful [Tested: 9] | |
19.26.E18 | \CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} |
|
0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] |
Aborted | Failure | Skipped - Because timed out | Failed [180 / 180]
Result: Complex[-0.6992255245511445, 1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.7332476531334464, -0.3074481161267689]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E18 | 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}} |
|
2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+(x + lambda)/(4))*sqrt(t+(y + lambda)/(4))*sqrt(t+((x + y*I)+ lambda)/(4))), t = 0..infinity) |
2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] == EllipticF[ArcCos[Sqrt[Divide[x + \[Lambda],4]/Divide[(x + y*I)+ \[Lambda],4]]],(Divide[(x + y*I)+ \[Lambda],4]-Divide[y + \[Lambda],4])/(Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4])]/Sqrt[Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4]] |
Failure | Failure | Skipped - Because timed out | Failed [180 / 180]
Result: Complex[-1.1343270456997319, -2.101834604175173]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.07907692856233961, -0.3004487668798371]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E19 | \lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x} |
|
lambda = sqrt(x)*sqrt(y)+sqrt(y)*sqrt(x + y*I)+sqrt(x + y*I)*sqrt(x) |
\[Lambda] == Sqrt[x]*Sqrt[y]+Sqrt[y]*Sqrt[x + y*I]+Sqrt[x + y*I]*Sqrt[x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E20 | \CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)} |
|
Error |
3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 2*3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+Divide[3,Sqrt[x + y*I]*((x + y*I)+ \[Lambda])] |
Missing Macro Error | Failure | - | Failed [180 / 180]
Result: Complex[0.4984590390126629, -1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.5295690158190058, -2.8195127867822802]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E21 | 2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z} |
|
Error |
2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == 4*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])- \[Lambda]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Sqrt[x]-Sqrt[y]-Sqrt[x + y*I] |
Missing Macro Error | Aborted | - | Failed [180 / 180]
Result: Plus[Complex[2.330530943809637, 0.9206144902290859], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-4.184639587172815, 1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-1.5682295148869496, 3.234090878649293], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26.E22 | \CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}} |
|
Error |
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 2*3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*1/Sqrt[\[Beta]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Beta]^(2))] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.26#Ex11 | \alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z} |
|
alpha = p*(sqrt(x)+sqrt(y)+sqrt(x + y*I))+sqrt(x)*sqrt(y)*sqrt(x + y*I) |
\[Alpha] == p*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I])+Sqrt[x]*Sqrt[y]*Sqrt[x + y*I] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex12 | \beta = \sqrt{p}(p+\lambda) |
|
beta = sqrt(p)*(p + lambda) |
\[Beta] == Sqrt[p]*(p + \[Lambda]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex13 | \beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z}) |
|
beta + alpha = (sqrt(p)+sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(x + y*I)) |
\[Beta]+ \[Alpha] == (Sqrt[p]+Sqrt[x])*(Sqrt[p]+Sqrt[y])*(Sqrt[p]+Sqrt[x + y*I]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26#Ex14 | \beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z) |
|
(beta)^(2)- (alpha)^(2) = (p - x)*(p - y)*(p -(x + y*I)) |
\[Beta]^(2)- \[Alpha]^(2) == (p - x)*(p - y)*(p -(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.26.E24 | z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta) |
z = (xi*zeta + eta*zeta - xi*eta)^(2)/(4*xi*eta*zeta) |
z == (\[Xi]*\[Zeta]+ \[Eta]*\[Zeta]- \[Xi]*\[Eta])^(2)/(4*\[Xi]*\[Eta]*\[Zeta]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.26.E25 | \CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda} |
Error |
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == 2*1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])] |
Missing Macro Error | Failure | - | Failed [1 / 1]
Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]} | |
19.26.E26 | \CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay} |
Error |
1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)] |
Missing Macro Error | Aborted | - | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]} Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]} ... skip entries to safe data | |
19.26.E27 | \CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta} |
Error |
1/Sqrt[(x)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((x)^(2)- \[Theta])] == 2*1/Sqrt[(s)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((s)^(2))/((s)^(2)- \[Theta])] |
Missing Macro Error | Failure | - | Successful [Tested: 2] | |
19.27#Ex1 | a = \tfrac{1}{2}(x+y) |
|
a = (1)/(2)*(x + y) |
a == Divide[1,2]*(x + y) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.27#Ex2 | b = \tfrac{1}{2}(y+z) |
|
b = (1)/(2)*(y +(x + y*I)) |
b == Divide[1,2]*(y +(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.27#Ex3 | c = \tfrac{1}{3}(x+y+z) |
|
c = (1)/(3)*(x + y +(x + y*I)) |
c == Divide[1,3]*(x + y +(x + y*I)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.27#Ex4 | f = (xyz)^{1/3} |
|
f = (x*y*(x + y*I))^(1/3) |
f == (x*y*(x + y*I))^(1/3) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.27#Ex5 | g = (xy)^{1/2} |
|
g = (x*y)^(1/2) |
g == (x*y)^(1/2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.27#Ex6 | h = (yz)^{1/2} |
|
h = (y*(x + y*I))^(1/2) |
h == (y*(x + y*I))^(1/2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.28.E1 | \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2} |
int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2) |
Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2) |
Failure | Aborted | Failed [10 / 10] Result: Float(undefined)+1.162857938*I
Test Values: {sigma = 1/2*3^(1/2)+1/2*I} Result: Float(undefined)+.9984297790*I
Test Values: {sigma = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Skipped - Because timed out | |
19.28.E2 | \int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2} |
Error |
Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2) |
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.28.E3 | \int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2} |
Error |
Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2) |
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.28.E5 | \int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z} |
|
Error |
Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.28.E6 | \int_{0}^{1}\CarlsonsymellintRD@{x}{y}{v^{2}z+(1-v^{2})p}\diff{v} = \CarlsonsymellintRJ@{x}{y}{z}{p} |
|
Error |
Integrate[3*(EllipticF[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)]-EllipticE[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)])/(((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)*((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)^(1/2)), {v, 0, 1}, GenerateConditions->None] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.28.E7 | \int_{0}^{\infty}\CarlsonsymellintRJ@{x}{y}{z}{r^{2}}\diff{r} = \tfrac{3}{2}\pi\CarlsonsymellintRF@{xy}{xz}{yz} |
|
Error |
Integrate[3*(x + y*I-x)/(x + y*I-(r)^(2))*(EllipticPi[(x + y*I-(r)^(2))/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], {r, 0, Infinity}, GenerateConditions->None] == Divide[3,2]*Pi*EllipticF[ArcCos[Sqrt[x*y/y*(x + y*I)]],(y*(x + y*I)-x*(x + y*I))/(y*(x + y*I)-x*y)]/Sqrt[y*(x + y*I)-x*y] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.28.E8 | \int_{0}^{\infty}\CarlsonsymellintRJ@{tx}{y}{z}{tp}\diff{t} = \frac{6}{\sqrt{p}}\CarlsonellintRC@{p}{x}\CarlsonsymellintRF@{0}{y}{z} |
|
Error |
Integrate[3*(x + y*I-t*x)/(x + y*I-t*p)*(EllipticPi[(x + y*I-t*p)/(x + y*I-t*x),ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)]-EllipticF[ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)])/Sqrt[x + y*I-t*x], {t, 0, Infinity}, GenerateConditions->None] == Divide[6,Sqrt[p]]*1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(p)/(x)]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.28.E9 | \int_{0}^{\pi/2}\CarlsonsymellintRF@{\sin^{2}@@{\theta}\cos^{2}@{x+y}}{\sin^{2}@@{\theta}\cos^{2}@{x-y}}{1}\diff{\theta} = \CarlsonsymellintRF@{0}{\cos^{2}@@{x}}{1}\CarlsonsymellintRF@{0}{\cos^{2}@@{y}}{1} |
|
int(0.5*int(1/(sqrt(t+(sin(theta))^(2)* (cos(x + y))^(2))*sqrt(t+(sin(theta))^(2)* (cos(x - y))^(2))*sqrt(t+1)), t = 0..infinity), theta = 0..Pi/2) = 0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(x))^(2))*sqrt(t+1)), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(y))^(2))*sqrt(t+1)), t = 0..infinity) |
Integrate[EllipticF[ArcCos[Sqrt[(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)/1]],(1-(Sin[\[Theta]])^(2)* (Cos[x - y])^(2))/(1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2))]/Sqrt[1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[x])^(2))/(1-0)]/Sqrt[1-0]*EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[y])^(2))/(1-0)]/Sqrt[1-0] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.28.E10 | \int_{0}^{\infty}\CarlsonsymellintRF@{(ac+bd)^{2}}{(ad+bc)^{2}}{4abcd\cosh^{2}@@{z}}\diff{z} = \tfrac{1}{2}\CarlsonsymellintRF@{0}{a^{2}}{b^{2}}\CarlsonsymellintRF@{0}{c^{2}}{d^{2}} |
|
int(0.5*int(1/(sqrt(t+(a*c + b*d)^(2))*sqrt(t+(a*d + b*c)^(2))*sqrt(t+4*a*b*c*d*(cosh(z))^(2))), t = 0..infinity), z = 0..infinity) = (1)/(2)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a)^(2))*sqrt(t+(b)^(2))), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(c)^(2))*sqrt(t+(d)^(2))), t = 0..infinity) |
Integrate[EllipticF[ArcCos[Sqrt[(a*c + b*d)^(2)/4*a*b*c*d*(Cosh[z])^(2)]],(4*a*b*c*d*(Cosh[z])^(2)-(a*d + b*c)^(2))/(4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2))]/Sqrt[4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2)], {z, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]/Sqrt[(b)^(2)-0]*EllipticF[ArcCos[Sqrt[0/(d)^(2)]],((d)^(2)-(c)^(2))/((d)^(2)-0)]/Sqrt[(d)^(2)-0] |
Error | Aborted | - | Skipped - Because timed out |
19.29#Ex1 | X_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}x} |
|
X[alpha] = sqrt(a[alpha]+ b[alpha]*x) |
Subscript[X, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex2 | Y_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}y} |
Y[alpha] = sqrt(a[alpha]+ b[alpha]*y) |
Subscript[Y, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.29.E2 | d_{\alpha\beta} = a_{\alpha}b_{\beta}-a_{\beta}b_{\alpha} |
d[alpha*beta] = a[alpha]*b[beta]- a[beta]*b[alpha] |
Subscript[d, \[Alpha]*\[Beta]] == Subscript[a, \[Alpha]]*Subscript[b, \[Beta]]- Subscript[a, \[Beta]]*Subscript[b, \[Alpha]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.29.E3 | s(t) = \prod_{\alpha=1}^{4}\sqrt{a_{\alpha}+b_{\alpha}t} |
|
s(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..4) |
s[t] == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 4}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E4 | \int_{y}^{x}\frac{\diff{t}}{s(t)} = 2\CarlsonsymellintRF@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}} |
|
int((1)/(s(t)), t = y..x) = 2*0.5*int(1/(sqrt(t+(U[12])^(2))*sqrt(t+(U[13])^(2))*sqrt(t+(U[23])^(2))), t = 0..infinity) |
Integrate[Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))]/Sqrt[(Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.29#Ex3 | U_{\alpha\beta} = (X_{\alpha}X_{\beta}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}X_{\gamma}X_{\delta})/(x-y) |
|
U[alpha*beta] = (X[alpha]*X[beta]*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*X[gamma]*X[delta])/(x - y) |
Subscript[U, \[Alpha]*\[Beta]] == (Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]])/(x - y) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex4 | U_{\alpha\beta} = U_{\beta\alpha} |
|
U[alpha*beta] = U[beta*alpha] |
Subscript[U, \[Alpha]*\[Beta]] == Subscript[U, \[Beta]*\[Alpha]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex5 | U_{\alpha\beta}^{2}-U_{\alpha\gamma}^{2} = d_{\alpha\delta}d_{\beta\gamma} |
|
(U[alpha*beta])^(2)- (U[alpha*gamma])^(2) = d[alpha*delta]*d[beta*gamma] |
(Subscript[U, \[Alpha]*\[Beta]])^(2)- (Subscript[U, \[Alpha]*\[Gamma]])^(2) == Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*\[Gamma]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex6 | U_{\alpha\beta} = \sqrt{b_{\alpha}}\sqrt{b_{\beta}}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}\sqrt{b_{\gamma}}\sqrt{b_{\delta}}, |
U[alpha*beta] = sqrt(b[alpha])*sqrt(b[beta])*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*sqrt(b[gamma])*sqrt(b[delta]) |
Subscript[U, \[Alpha]*\[Beta]] == Sqrt[Subscript[b, \[Alpha]]]*Sqrt[Subscript[b, \[Beta]]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Sqrt[Subscript[b, \[Gamma]]]*Sqrt[Subscript[b, \[Delta]]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.29#Ex7 | U_{\alpha\beta} = X_{\alpha}X_{\beta}\sqrt{-b_{\gamma}}\sqrt{-b_{\delta}}+\sqrt{-b_{\alpha}}\sqrt{-b_{\beta}}X_{\gamma}X_{\delta} |
U[alpha*beta] = X[alpha]*X[beta]*sqrt(- b[gamma])*sqrt(- b[delta])+sqrt(- b[alpha])*sqrt(- b[beta])*X[gamma]*X[delta] |
Subscript[U, \[Alpha]*\[Beta]] == Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Sqrt[- Subscript[b, \[Gamma]]]*Sqrt[- Subscript[b, \[Delta]]]+Sqrt[- Subscript[b, \[Alpha]]]*Sqrt[- Subscript[b, \[Beta]]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.29.E7 | \int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{\delta}+b_{\delta}t}\frac{\diff{t}}{s(t)} = \tfrac{2}{3}d_{\alpha\beta}d_{\alpha\gamma}\CarlsonsymellintRD@{U_{\alpha\beta}^{2}}{U_{\alpha\gamma}^{2}}{U_{\alpha\delta}^{2}}+\frac{2X_{\alpha}Y_{\alpha}}{X_{\delta}Y_{\delta}U_{\alpha\delta}} |
Error |
Integrate[Divide[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t,Subscript[a, \[Delta]]+ Subscript[b, \[Delta]]*t]*Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == Divide[2,3]*Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*3*(EllipticF[ArcCos[Sqrt[(Subscript[U, \[Alpha]*\[Beta]])^(2)/(Subscript[U, \[Alpha]*\[Delta]])^(2)]],((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))/((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))]-EllipticE[ArcCos[Sqrt[(Subscript[U, \[Alpha]*\[Beta]])^(2)/(Subscript[U, \[Alpha]*\[Delta]])^(2)]],((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))/((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))])/(((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))*((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))^(1/2))+Divide[2*Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]],Subscript[X, \[Delta]]*Subscript[Y, \[Delta]]*Subscript[U, \[Alpha]*\[Delta]]] |
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.29.E8 | \int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{5}+b_{5}t}\frac{\diff{t}}{s(t)} = \frac{2}{3}\frac{d_{\alpha\beta}d_{\alpha\gamma}d_{\alpha\delta}}{d_{\alpha 5}}\CarlsonsymellintRJ@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}}{U_{\alpha 5}^{2}}+2\CarlsonellintRC@{S_{\alpha 5}^{2}}{Q_{\alpha 5}^{2}} |
|
Error |
Integrate[Divide[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t,Subscript[a, 5]+ Subscript[b, 5]*t]*Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == Divide[2,3]*Divide[Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*Subscript[d, \[Alpha]*\[Delta]],Subscript[d, \[Alpha]*5]]*3*((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, \[Alpha]*5])^(2))*(EllipticPi[((Subscript[U, 23])^(2)-(Subscript[U, \[Alpha]*5])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)),ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))]-EllipticF[ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))])/Sqrt[(Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)]+ 2*1/Sqrt[(Subscript[Q, \[Alpha]*5])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((Subscript[S, \[Alpha]*5])^(2))/((Subscript[Q, \[Alpha]*5])^(2))] |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.29#Ex8 | U_{\alpha 5}^{2} = U_{\alpha\beta}^{2}-\frac{d_{\alpha\gamma}d_{\alpha\delta}d_{\beta 5}}{d_{\alpha 5}} |
|
(U[alpha*5])^(2) = (U[alpha*beta])^(2)-(d[alpha*gamma]*d[alpha*delta]*d[beta*5])/(d[alpha*5]) |
(Subscript[U, \[Alpha]*5])^(2) == (Subscript[U, \[Alpha]*\[Beta]])^(2)-Divide[Subscript[d, \[Alpha]*\[Gamma]]*Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*5],Subscript[d, \[Alpha]*5]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex9 | S_{\alpha 5} = \frac{1}{x-y}\left(\frac{X_{\beta}X_{\gamma}X_{\delta}}{X_{\alpha}}Y_{5}^{2}+\frac{Y_{\beta}Y_{\gamma}Y_{\delta}}{Y_{\alpha}}X_{5}^{2}\right) |
|
S[alpha*5] = (1)/(x - y)*((X[beta]*X[gamma]*X[delta])/(X[alpha])*(Y[5])^(2)+(Y[beta]*Y[gamma]*Y[delta])/(Y[alpha])*(X[5])^(2)) |
Subscript[S, \[Alpha]*5] == Divide[1,x - y]*(Divide[Subscript[X, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]],Subscript[X, \[Alpha]]]*(Subscript[Y, 5])^(2)+Divide[Subscript[Y, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]],Subscript[Y, \[Alpha]]]*(Subscript[X, 5])^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex10 | Q_{\alpha 5} = \frac{X_{5}Y_{5}}{X_{\alpha}Y_{\alpha}}U_{\alpha 5} |
|
Q[alpha*5] = (X[5]*Y[5])/(X[alpha]*Y[alpha])*U[alpha*5] |
Subscript[Q, \[Alpha]*5] == Divide[Subscript[X, 5]*Subscript[Y, 5],Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]]]*Subscript[U, \[Alpha]*5] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex11 | S_{\alpha 5}^{2}-Q_{\alpha 5}^{2} = \frac{d_{\beta 5}d_{\gamma 5}d_{\delta 5}}{d_{\alpha 5}} |
|
(S[alpha*5])^(2)- (Q[alpha*5])^(2) = (d[beta*5]*d[gamma*5]*d[delta*5])/(d[alpha*5]) |
(Subscript[S, \[Alpha]*5])^(2)- (Subscript[Q, \[Alpha]*5])^(2) == Divide[Subscript[d, \[Beta]*5]*Subscript[d, \[Gamma]*5]*Subscript[d, \[Delta]*5],Subscript[d, \[Alpha]*5]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E10 | \int_{u}^{b}\sqrt{\frac{a-t}{(b-t)(t-c)^{3}}}\diff{t} = -\tfrac{2}{3}{(a-b)}{(b-u)}^{3/2}\CarlsonsymellintRD@@{(a-b)(u-c)}{(b-c)(a-u)}{(a-b)(b-c)}+\frac{2}{b-c}\sqrt{\frac{(a-u)(b-u)}{u-c}} |
Error |
Integrate[Sqrt[Divide[a - t,(b - t)*(t - c)^(3)]], {t, u, b}, GenerateConditions->None] == -Divide[2,3]*(a - b)*(b - u)^(3/2)* 3*(EllipticF[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))]-EllipticE[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))])/(((a - b)*(b - c)-(b - c)*(a - u))*((a - b)*(b - c)-(a - b)*(u - c))^(1/2))+Divide[2,b - c]*Sqrt[Divide[(a - u)*(b - u),u - c]] |
Missing Macro Error | Aborted | - | Skipped - Because timed out | |
19.29.E11 | I(\mathbf{m}) = \int_{y}^{x}\prod_{\alpha=1}^{h}(a_{\alpha}+b_{\alpha}t)^{-1/2}\prod_{j=1}^{n}(a_{j}+b_{j}t)^{m_{j}}\diff{t} |
|
I(m) = int(product((a[alpha]+ b[alpha]*t)^(- 1/2)* product((a[j]+ b[j]*t)^(m[j]), j = 1..n), alpha = 1..h), t = y..x) |
I[m] == Integrate[Product[(Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t)^(- 1/2)* Product[(Subscript[a, j]+ Subscript[b, j]*t)^(Subscript[m, j]), {j, 1, n}, GenerateConditions->None], {\[Alpha], 1, h}, GenerateConditions->None], {t, y, x}, GenerateConditions->None] |
Aborted | Aborted | Error | Skipped - Because timed out |
19.29.E15 | b_{j}I(\mathbf{e}_{l}-\mathbf{e}_{j}) = d_{lj}I(-\mathbf{e}_{j})+b_{l}I(\boldsymbol{{0}}) |
b[j]*I(e[l]- e[j]) = d[l, j]*I(- e[j])+ b[l]*I(0) |
Subscript[b, j]*I[Subscript[e, l]- Subscript[e, j]] == Subscript[d, l, j]*I[- Subscript[e, j]]+ Subscript[b, l]*I[0] |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
19.29.E16 | b_{\beta}b_{\gamma}I(\mathbf{e}_{\alpha}) = d_{\alpha\beta}d_{\alpha\gamma}I(-\mathbf{e}_{\alpha})+2b_{\alpha}\left(\frac{s(x)}{a_{\alpha}+b_{\alpha}x}-\frac{s(y)}{a_{\alpha}+b_{\alpha}y}\right) |
|
b[beta]*b[gamma]*I(e[alpha]) = d[alpha*beta]*d[alpha*gamma]*I(- e[alpha])+ 2*b[alpha]*((s(x))/(a[alpha]+ b[alpha]*x)-(s(y))/(a[alpha]+ b[alpha]*y)) |
Subscript[b, \[Beta]]*Subscript[b, \[Gamma]]*I[Subscript[e, \[Alpha]]] == Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*I[- Subscript[e, \[Alpha]]]+ 2*Subscript[b, \[Alpha]]*(Divide[s[x],Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x]-Divide[s[y],Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E17 | s(t) = \prod_{\alpha=1}^{3}\sqrt{a_{\alpha}+b_{\alpha}t} |
|
s(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..3) |
s[t] == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 3}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E18 | b_{j}^{q}I(q\mathbf{e}_{l}) = \sum_{r=0}^{q}\binom{q}{r}b_{l}^{r}d_{lj}^{q-r}I(r\mathbf{e}_{j}) |
(b[j])^(q)*I(q*e[l]) = sum(binomial(q,r)*(b[l])^(r)*(d[l, j])^(q - r)*I(r*e[j]), r = 0..q) |
(Subscript[b, j])^(q)*I[q*Subscript[e, l]] == Sum[Binomial[q,r]*(Subscript[b, l])^(r)*(Subscript[d, l, j])^(q - r)*I[r*Subscript[e, j]], {r, 0, q}, GenerateConditions->None] |
Failure | Failure | Error | Skipped - Because timed out | |
19.29.E19 | \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \CarlsonsymellintRF@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}} |
|
int((1)/(sqrt(Q[1](t)* Q[2](t))), t = y..x) = 0.5*int(1/(sqrt(t+(U)^(2)+ a[1]*b[2])*sqrt(t+(U)^(2)+ a[2]*b[1])*sqrt(t+(U)^(2))), t = 0..infinity) |
Integrate[Divide[1,Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]/Sqrt[(U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]] |
Aborted | Aborted | Manual Skip! | Skipped - Because timed out |
19.29.E20 | \int_{y}^{x}\frac{t^{2}\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}a_{1}a_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xy/U) |
|
Error |
Integrate[Divide[(t)^(2),Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[a, 1]*Subscript[a, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y/U) |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.29.E21 | \int_{y}^{x}\frac{\diff{t}}{t^{2}\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}b_{1}b_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xyU)^{-1} |
|
Error |
Integrate[Divide[1,(t)^(2)*Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[b, 1]*Subscript[b, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y*U)^(- 1) |
Missing Macro Error | Aborted | - | Skipped - Because timed out |
19.29.E22 | (x^{2}-y^{2})U = x\sqrt{Q_{1}(y)Q_{2}(y)}+y\sqrt{Q_{1}(x)Q_{2}(x)} |
|
((x)^(2)- (y)^(2))*U = x*sqrt(Q[1](y)* Q[2](y))+ y*sqrt(Q[1](x)* Q[2](x)) |
((x)^(2)- (y)^(2))*U == x*Sqrt[Subscript[Q, 1][y]* Subscript[Q, 2][y]]+ y*Sqrt[Subscript[Q, 1][x]* Subscript[Q, 2][x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E23 | \int_{y}^{\infty}\frac{\diff{t}}{\sqrt{(t^{2}+a^{2})(t^{2}-b^{2})}} = \CarlsonsymellintRF@{y^{2}+a^{2}}{y^{2}-b^{2}}{y^{2}} |
|
int((1)/(sqrt(((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2)))), t = y..infinity) = 0.5*int(1/(sqrt(t+(y)^(2)+ (a)^(2))*sqrt(t+(y)^(2)- (b)^(2))*sqrt(t+(y)^(2))), t = 0..infinity) |
Integrate[Divide[1,Sqrt[((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2))]], {t, y, Infinity}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(y)^(2)+ (a)^(2)/(y)^(2)]],((y)^(2)-(y)^(2)- (b)^(2))/((y)^(2)-(y)^(2)+ (a)^(2))]/Sqrt[(y)^(2)-(y)^(2)+ (a)^(2)] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.29.E24 | \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = 4\CarlsonsymellintRF@{U}{U+D_{12}+V}{U+D_{12}-V} |
|
int((1)/(sqrt(Q[1](t)* Q[2](t))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U + D[12]+ V)*sqrt(t+U + D[12]- V)), t = 0..infinity) |
Integrate[Divide[1,Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U + Subscript[D, 12]- V]],(U + Subscript[D, 12]- V-U + Subscript[D, 12]+ V)/(U + Subscript[D, 12]- V-U)]/Sqrt[U + Subscript[D, 12]- V-U] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.29#Ex17 | (x-y)^{2}U = S_{1}S_{2} |
|
(x - y)^(2)* U = S[1]*S[2] |
(x - y)^(2)* U == Subscript[S, 1]*Subscript[S, 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex18 | S_{j} = \left(\sqrt{Q_{j}(x)}+\sqrt{Q_{j}(y)}\right)^{2}-h_{j}(x-y)^{2} |
|
S[j] = (sqrt(Q[j](x))+sqrt(Q[j](y)))^(2)- h[j]*(x - y)^(2) |
Subscript[S, j] == (Sqrt[Subscript[Q, j][x]]+Sqrt[Subscript[Q, j][y]])^(2)- Subscript[h, j]*(x - y)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex19 | D_{jl} = 2f_{j}h_{l}+2h_{j}f_{l}-g_{j}g_{l} |
|
D[j, l] = 2*f[j]*h[l]+ 2*h[j]*f[l]- g[j]*g[l] |
Subscript[D, j, l] == 2*Subscript[f, j]*Subscript[h, l]+ 2*Subscript[h, j]*Subscript[f, l]- Subscript[g, j]*Subscript[g, l] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex20 | V = \sqrt{D_{12}^{2}-D_{11}D_{22}} |
|
V = sqrt((D[12])^(2)- D[11]*D[22]) |
V == Sqrt[(Subscript[D, 12])^(2)- Subscript[D, 11]*Subscript[D, 22]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex21 | S_{1} = (X_{1}Y_{2}+Y_{1}X_{2})^{2} |
|
S[1] = (X[1]*Y[2]+ Y[1]*X[2])^(2) |
Subscript[S, 1] == (Subscript[X, 1]*Subscript[Y, 2]+ Subscript[Y, 1]*Subscript[X, 2])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex22 | X_{j} = \sqrt{a_{j}+b_{j}x} |
|
X[j] = sqrt(a[j]+ b[j]*x) |
Subscript[X, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*x] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex23 | Y_{j} = \sqrt{a_{j}+b_{j}y} |
|
Y[j] = sqrt(a[j]+ b[j]*y) |
Subscript[Y, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*y] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex24 | D_{12} = 2a_{1}a_{2}h_{2}+2b_{1}b_{2}f_{2}-(a_{1}b_{2}+a_{2}b_{1})g_{2} |
|
D[12] = 2*a[1]*a[2]*h[2]+ 2*b[1]*b[2]*f[2]-(a[1]*b[2]+ a[2]*b[1])*g[2] |
Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[a, 2]*Subscript[h, 2]+ 2*Subscript[b, 1]*Subscript[b, 2]*Subscript[f, 2]-(Subscript[a, 1]*Subscript[b, 2]+ Subscript[a, 2]*Subscript[b, 1])*Subscript[g, 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex25 | D_{11} = -(a_{1}b_{2}-a_{2}b_{1})^{2} |
|
D[11] = -(a[1]*b[2]- a[2]*b[1])^(2) |
Subscript[D, 11] == -(Subscript[a, 1]*Subscript[b, 2]- Subscript[a, 2]*Subscript[b, 1])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex26 | S_{1} = (X_{1}+Y_{1})^{2} |
|
S[1] = (X[1]+ Y[1])^(2) |
Subscript[S, 1] == (Subscript[X, 1]+ Subscript[Y, 1])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex27 | D_{12} = 2a_{1}h_{2}-b_{1}g_{2} |
|
D[12] = 2*a[1]*h[2]- b[1]*g[2] |
Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[h, 2]- Subscript[b, 1]*Subscript[g, 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex28 | D_{11} = -b_{1}^{2} |
|
D[11] = - (b[1])^(2) |
Subscript[D, 11] == - (Subscript[b, 1])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E28 | \int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{3}-a^{3}}} = 4\CarlsonsymellintRF@{U}{U-3a+2\sqrt{3}a}{U-3a-2\sqrt{3}a} |
|
int((1)/(sqrt((t)^(3)- (a)^(3))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U - 3*a + 2*sqrt(3)*a)*sqrt(t+U - 3*a - 2*sqrt(3)*a)), t = 0..infinity) |
Integrate[Divide[1,Sqrt[(t)^(3)- (a)^(3)]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U - 3*a - 2*Sqrt[3]*a]],(U - 3*a - 2*Sqrt[3]*a-U - 3*a + 2*Sqrt[3]*a)/(U - 3*a - 2*Sqrt[3]*a-U)]/Sqrt[U - 3*a - 2*Sqrt[3]*a-U] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.29#Ex29 | (x-y)^{2}U = (\sqrt{x-a}+\sqrt{y-a})^{2}\left((\xi+\eta)^{2}-(x-y)^{2}\right) |
|
(x - y)^(2)* U = (sqrt(x - a)+sqrt(y - a))^(2)*((xi + eta)^(2)-(x - y)^(2)) |
(x - y)^(2)* U == (Sqrt[x - a]+Sqrt[y - a])^(2)*((\[Xi]+ \[Eta])^(2)-(x - y)^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex30 | \xi = \sqrt{x^{2}+ax+a^{2}} |
|
xi = sqrt((x)^(2)+ a*x + (a)^(2)) |
\[Xi] == Sqrt[(x)^(2)+ a*x + (a)^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29#Ex31 | \eta = \sqrt{y^{2}+ay+a^{2}} |
|
eta = sqrt((y)^(2)+ a*y + (a)^(2)) |
\[Eta] == Sqrt[(y)^(2)+ a*y + (a)^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E30 | \int_{y}^{x}\frac{\diff{t}}{\sqrt{Q(t^{2})}} = 2\CarlsonsymellintRF@{U}{U-g+2\sqrt{fh}}{U-g-2\sqrt{fh}} |
|
int((1)/(sqrt(Q((t)^(2)))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U - g + 2*sqrt(f*h))*sqrt(t+U - g - 2*sqrt(f*h))), t = 0..infinity) |
Integrate[Divide[1,Sqrt[Q[(t)^(2)]]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - g - 2*Sqrt[f*h]]],(U - g - 2*Sqrt[f*h]-U - g + 2*Sqrt[f*h])/(U - g - 2*Sqrt[f*h]-U)]/Sqrt[U - g - 2*Sqrt[f*h]-U] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.29.E31 | (x-y)^{2}U = \left(\sqrt{Q(x^{2})}+\sqrt{Q(y^{2})}\right)^{2}-h(x^{2}-y^{2})^{2} |
|
(x - y)^(2)* U = (sqrt(Q((x)^(2)))+sqrt(Q((y)^(2))))^(2)- h*((x)^(2)- (y)^(2))^(2) |
(x - y)^(2)* U == (Sqrt[Q[(x)^(2)]]+Sqrt[Q[(y)^(2)]])^(2)- h*((x)^(2)- (y)^(2))^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.29.E32 | \int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{4}+a^{4}}} = 2\CarlsonsymellintRF@{U}{U+2a^{2}}{U-2a^{2}} |
|
int((1)/(sqrt((t)^(4)+ (a)^(4))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U + 2*(a)^(2))*sqrt(t+U - 2*(a)^(2))), t = 0..infinity) |
Integrate[Divide[1,Sqrt[(t)^(4)+ (a)^(4)]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - 2*(a)^(2)]],(U - 2*(a)^(2)-U + 2*(a)^(2))/(U - 2*(a)^(2)-U)]/Sqrt[U - 2*(a)^(2)-U] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[0.06910876495694751, 1.480960979386122]
Test Values: {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]} Result: Complex[1.3051585498245286, 1.480960979386122]
Test Values: {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
19.29.E33 | (x-y)^{2}U = \left(\sqrt{x^{4}+a^{4}}+\sqrt{y^{4}+a^{4}}\right)^{2}-(x^{2}-y^{2})^{2} |
|
(x - y)^(2)* U = (sqrt((x)^(4)+ (a)^(4))+sqrt((y)^(4)+ (a)^(4)))^(2)-((x)^(2)- (y)^(2))^(2) |
(x - y)^(2)* U == (Sqrt[(x)^(4)+ (a)^(4)]+Sqrt[(y)^(4)+ (a)^(4)])^(2)-((x)^(2)- (y)^(2))^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.30#Ex1 | x = a\sin@@{\phi} |
|
x = a*sin(phi) |
x == a*Sin[\[Phi]] |
Failure | Failure | Failed [180 / 180] Result: 2.788470502+.5063946946*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 3/2} Result: 1.788470502+.5063946946*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 1/2} ... skip entries to safe data |
Failed [180 / 180]
Result: Complex[2.1491827752870476, 0.34394646701016035]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.093555858156998, 0.6491787480429551]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.30#Ex2 | y = b\cos@@{\phi} |
y = b*cos(phi) |
y == b*Cos[\[Phi]] |
Failure | Failure | Failed [108 / 108] Result: -1.393894198
Test Values: {b = -3/2, phi = 3/2, y = -3/2} Result: 1.606105802
Test Values: {b = -3/2, phi = 3/2, y = 3/2} ... skip entries to safe data |
Failed [108 / 108]
Result: -1.3938941974984456
Test Values: {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 1.5]} Result: -0.18362615716444086
Test Values: {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 0.5]} ... skip entries to safe data | |
19.30.E2 | s = a\int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta} |
|
s = a*int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi) |
s == a*Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.30.E3 | s/a = \incellintEk@{\phi}{k} |
|
s/a = EllipticE(sin(phi), k) |
s/a == EllipticE[\[Phi], (k)^2] |
Failure | Failure | Failed [300 / 300] Result: .1410196655-.3375964631*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 1} Result: -.36391978e-1+.5433649104e-1*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.5672114831419685, -0.22929764467344024]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.5579190406370536, -0.16535187593702125]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.30.E3 | \incellintEk@{\phi}{k} = {\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}} |
|
Error |
EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2)) |
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [180 / 180]
Result: Complex[3.5743811704478246, 0.7698502565730785]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[3.9424508382496875, -1.017653751864599]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data |
19.30#Ex3 | k^{2} = 1-(b^{2}/a^{2}) |
|
(k)^(2) = 1 -((b)^(2)/(a)^(2)) |
(k)^(2) == 1 -((b)^(2)/(a)^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.30#Ex4 | c = \csc^{2}@@{\phi} |
|
c = (csc(phi))^(2) |
c == (Csc[\[Phi]])^(2) |
Failure | Failure | Failed [60 / 60] Result: -2.359812877+.7993130071*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I} Result: -1.296085040-.8173084059*I
Test Values: {c = -3/2, phi = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [60 / 60]
Result: Complex[-3.841312467237177, 3.4490957612740374]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.17530792640393877, -3.4502399957777015]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.30.E5 | L(a,b) = 4a\compellintEk@{k} |
|
L(a , b) = 4*a*EllipticE(k) |
L[a , b] == 4*a*EllipticE[(k)^2] |
Failure | Failure | Failed [300 / 300] Result: (.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+6.000000000
Test Values: {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 1} Result: (.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+2.437793319+8.063125386*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 2} ... skip entries to safe data |
Error |
19.30.E5 | 4a\compellintEk@{k} = 8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1} |
|
Error |
4*a*EllipticE[(k)^2] == 8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) |
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [108 / 108]
Result: 12.849555921538759
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1]} Result: Complex[16.411762602778996, -8.063125388322588]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 2]} ... skip entries to safe data |
19.30.E5 | 8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1} = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}} |
|
Error |
8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) |
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [18 / 36]
Result: -37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, -1.5]} Result: -37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, 1.5]} ... skip entries to safe data |
19.30.E5 | 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}} = 8ab\CarlsonsymellintRG@{0}{a^{-2}}{b^{-2}} |
|
Error |
8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) == 8*a*b*Sqrt[(b)^(- 2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(- 2)]]]^2]) |
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [18 / 36]
Result: 37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, 1.5]} Result: 26.729786441110512
Test Values: {Rule[a, -1.5], Rule[b, 0.5]} ... skip entries to safe data |
19.30.E6 | \pderiv{s}{(1/k)} = \sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k} |
subs( temp=(1/k), diff( s, temp$(1) ) ) = sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k) |
(D[s, {temp, 1}]/.temp-> (1/k)) == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2] |
Failure | Failure | Successful [Tested: 300] | Failed [20 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, -2]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, 2]} ... skip entries to safe data | |
19.30.E6 | \sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k} = \sqrt{a^{2}-b^{2}}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c} |
sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k) = sqrt((a)^(2)- (b)^(2))*0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity) |
Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2] == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1] |
Error | Failure | Skip - symbolical successful subtest | Skip - No test values generated | |
19.30#Ex5 | x = a\sqrt{t+1} |
|
x = a*sqrt(t + 1) |
x == a*Sqrt[t + 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.30#Ex6 | y = b\sqrt{t} |
|
y = b*sqrt(t) |
y == b*Sqrt[t] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.30.E8 | s = \frac{1}{2}\int_{0}^{y^{2}/b^{2}}\sqrt{\frac{(a^{2}+b^{2})t+b^{2}}{t(t+1)}}\diff{t} |
|
s = (1)/(2)*int(sqrt((((a)^(2)+ (b)^(2))*t + (b)^(2))/(t*(t + 1))), t = 0..(y)^(2)/(b)^(2)) |
s == Divide[1,2]*Integrate[Sqrt[Divide[((a)^(2)+ (b)^(2))*t + (b)^(2),t*(t + 1)]], {t, 0, (y)^(2)/(b)^(2)}, GenerateConditions->None] |
Failure | Aborted | Failed [300 / 300] Result: -3.149531120
Test Values: {a = -3/2, b = -3/2, s = -3/2, y = -3/2} Result: -3.149531120
Test Values: {a = -3/2, b = -3/2, s = -3/2, y = 3/2} ... skip entries to safe data |
Skipped - Because timed out |
19.30.E9 | s = \tfrac{1}{2}I(\mathbf{e}_{1}) |
s = (1)/(2)*I(e[1]) |
s == Divide[1,2]*I[Subscript[e, 1]] |
Failure | Failure | Failed [298 / 300] Result: -1.750000000-.4330127020*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = 1/2*3^(1/2)+1/2*I} Result: -1.066987298-.2500000002*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [180 / 180]
Result: Complex[-1.375, -0.21650635094610968]
Test Values: {Rule[Complex[0, 1], 1], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.375, -0.21650635094610968]
Test Values: {Rule[Complex[0, 1], 2], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data | |
19.30.E9 | \tfrac{1}{2}I(\mathbf{e}_{1}) = -\tfrac{1}{3}a^{2}b^{2}\CarlsonsymellintRD@{r}{r+b^{2}+a^{2}}{r+b^{2}}+y\sqrt{\frac{r+b^{2}+a^{2}}{r+b^{2}}} |
Error |
Divide[1,2]*I[Subscript[e, 1]] == -Divide[1,3]*(a)^(2)* (b)^(2)* 3*(EllipticF[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)]-EllipticE[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)])/((r + (b)^(2)-r + (b)^(2)+ (a)^(2))*(r + (b)^(2)-r)^(1/2))+ y*Sqrt[Divide[r + (b)^(2)+ (a)^(2),r + (b)^(2)]] |
Missing Macro Error | Failure | Skip - symbolical successful subtest | Skip - No test values generated | |
19.30.E10 | r^{2} = 2a^{2}\cos@{2\theta} |
(r)^(2) = 2*(a)^(2)* cos(2*theta) |
(r)^(2) == 2*(a)^(2)* Cos[2*\[Theta]] |
Failure | Failure | Failed [108 / 108] Result: 6.704966234
Test Values: {a = -3/2, r = -3/2, theta = 3/2} Result: -.181360376
Test Values: {a = -3/2, r = -3/2, theta = 1/2} ... skip entries to safe data |
Failed [108 / 108]
Result: 6.704966234702004
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 1.5]} Result: -0.18136037640662916
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 0.5]} ... skip entries to safe data | |
19.30.E11 | s = 2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}} |
s = 2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r) |
s == 2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None] |
Error | Failure | - | Failed [208 / 216]
Result: 0.042085201578189846
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[s, -1.5]} Result: 3.04208520157819
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[s, 1.5]} ... skip entries to safe data | |
19.30.E11 | 2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}} = \sqrt{2a^{2}}\CarlsonsymellintRF@{q-1}{q}{q+1} |
2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r) = sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+q - 1)*sqrt(t+q)*sqrt(t+q + 1)), t = 0..infinity) |
2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None] == Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[q - 1/q + 1]],(q + 1-q)/(q + 1-q - 1)]/Sqrt[q + 1-q - 1] |
Error | Failure | - | Failed [12 / 12]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, 2], Rule[r, -1.5]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, 2], Rule[r, 1.5]} ... skip entries to safe data | |
19.30.E12 | s = a\incellintFk@{\phi}{1/\sqrt{2}} |
s = a*EllipticF(sin(phi), 1/(sqrt(2))) |
s == a*EllipticF[\[Phi], (1/(Sqrt[2]))^2] |
Failure | Failure | Failed [300 / 300] Result: -.201379324+.8785912788*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2} Result: 2.798620676+.8785912788*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = 3/2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.8505476575870029, 0.390685462269601]
Test Values: {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.859414812385125, 0.6494166239344216]
Test Values: {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data | |
19.30.E13 | P = 4\sqrt{2a^{2}}\CarlsonsymellintRF@{0}{1}{2} |
|
P = 4*sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) |
P == 4*Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] |
Failure | Failure | Failed [60 / 60] Result: -10.25842266+.5000000000*I
Test Values: {P = 1/2*3^(1/2)+1/2*I, a = -3/2} Result: -10.25842266+.5000000000*I
Test Values: {P = 1/2*3^(1/2)+1/2*I, a = 3/2} ... skip entries to safe data |
Failed [60 / 60]
Result: Complex[-10.691435361916012, 0.24999999999999997]
Test Values: {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-11.37444806380823, 0.43301270189221935]
Test Values: {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.30.E13 | 4\sqrt{2a^{2}}\CarlsonsymellintRF@{0}{1}{2} = \sqrt{2a^{2}}\times 5.24411\;51\ldots |
|
4*sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = sqrt(2*(a)^(2)) * 5.2441151 |
4*Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Sqrt[2*(a)^(2)] * 5.2441151 |
Translation Error | Translation Error | Skip - symbolical successful subtest | Skip - symbolical successful subtest |
19.30.E13 | \sqrt{2a^{2}}\times 5.24411\;51\ldots = 4a\compellintKk@{1/\sqrt{2}} |
|
sqrt(2*(a)^(2)) * 5.2441151 = 4*a*EllipticK(1/(sqrt(2))) |
Sqrt[2*(a)^(2)] * 5.2441151 == 4*a*EllipticK[(1/(Sqrt[2]))^2] |
Translation Error | Translation Error | Skip - symbolical successful subtest | Skip - symbolical successful subtest |
19.30.E13 | 4a\compellintKk@{1/\sqrt{2}} = a\times 7.41629\;87\dots |
|
4*a*EllipticK(1/(sqrt(2))) = a * 7.4162987 |
4*a*EllipticK[(1/(Sqrt[2]))^2] == a * 7.4162987 |
Translation Error | Translation Error | Skip - symbolical successful subtest | Skip - symbolical successful subtest |
19.32.E1 | z(p) = \CarlsonsymellintRF@{p-x_{1}}{p-x_{2}}{p-x_{3}} |
|
(x + y*I)*(p) = 0.5*int(1/(sqrt(t+p - x[1])*sqrt(t+p - x[2])*sqrt(t+p - x[3])), t = 0..infinity) |
(x + y*I)*(p) == EllipticF[ArcCos[Sqrt[p - Subscript[x, 1]/p - Subscript[x, 3]]],(p - Subscript[x, 3]-p - Subscript[x, 2])/(p - Subscript[x, 3]-p - Subscript[x, 1])]/Sqrt[p - Subscript[x, 3]-p - Subscript[x, 1]] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[-0.7208699572238464, -0.7193085577979393]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[1.3758216901446034, -2.446030868401005]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.32.E3 | x_{1} > x_{2} |
|
x[1] > x[2] |
Subscript[x, 1] > Subscript[x, 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.32#Ex1 | z(\infty) = 0 |
|
z(infinity) = 0 |
z[Infinity] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.32#Ex3 | z(x_{2}) = z(x_{1})+z(x_{3}) |
|
(x + y*I)*(x[2]) = (x + y*I)*(x[1])+(x + y*I)*(x[3]) |
(x + y*I)*(Subscript[x, 2]) == (x + y*I)*(Subscript[x, 1])+(x + y*I)*(Subscript[x, 3]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.32#Ex4 | z(x_{3}) = \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} |
|
(x + y*I)*(x[3]) = 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) |
(x + y*I)*(Subscript[x, 3]) == EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Plus[Complex[1.024519052838329, -0.27451905283832906], Times[Complex[-0.25881904510252074, -0.9659258262890683], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[0.27451905283832917, 1.0245190528383288], Times[Complex[-0.7239434227163943, -0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.32#Ex4 | \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} = -i\CarlsonsymellintRF@{0}{x_{1}-x_{3}}{x_{2}-x_{3}} |
|
0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) = - I*0.5*int(1/(sqrt(t+0)*sqrt(t+x[1]- x[3])*sqrt(t+x[2]- x[3])), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] == - I*EllipticF[ArcCos[Sqrt[0/Subscript[x, 2]- Subscript[x, 3]]],(Subscript[x, 2]- Subscript[x, 3]-Subscript[x, 1]- Subscript[x, 3])/(Subscript[x, 2]- Subscript[x, 3]-0)]/Sqrt[Subscript[x, 2]- Subscript[x, 3]-0] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[-0.4754994064110389, 1.6461555153586378], Times[Complex[0.7239434227163943, 0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.33.E1 | S = 3V\CarlsonsymellintRG@{a^{-2}}{b^{-2}}{c^{-2}} |
|
Error |
S == 3*V*Sqrt[(c)^(- 2)-(a)^(- 2)]*(EllipticE[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+(Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]^2]) |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.33.E2 | \frac{S}{2\pi} = c^{2}+\frac{ab}{\sin@@{\phi}}\left(\incellintEk@{\phi}{k}\sin^{2}@@{\phi}+\incellintFk@{\phi}{k}\cos^{2}@@{\phi}\right) |
(S)/(2*Pi) = (c)^(2)+(a*b)/(sin(phi))*(EllipticE(sin(phi), k)*(sin(phi))^(2)+ EllipticF(sin(phi), k)*(cos(phi))^(2)) |
Divide[S,2*Pi] == (c)^(2)+Divide[a*b,Sin[\[Phi]]]*(EllipticE[\[Phi], (k)^2]*(Sin[\[Phi]])^(2)+ EllipticF[\[Phi], (k)^2]*(Cos[\[Phi]])^(2)) |
Failure | Failure | Failed [300 / 300] Result: -4.910443424-.9759333290e-1*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1} Result: -5.505002077-.4622644670e-1*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-4.54039506540302, -0.09283854764917886]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 1], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-4.634568996487559, -0.31545051747139075]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 2], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} ... skip entries to safe data | |
19.33#Ex1 | \cos@@{\phi} = \frac{c}{a} |
|
cos(phi) = (c)/(a) |
Cos[\[Phi]] == Divide[c,a] |
Failure | Failure | Failed [300 / 300] Result: -.2694569811-.3969495503*I
Test Values: {a = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I} Result: .227765517+.4690753764*I
Test Values: {a = -3/2, c = -3/2, phi = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.06378043051909243, -0.10599798465255418]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.061176166972244816, 0.11050836582743673]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.33#Ex2 | k^{2} = \frac{a^{2}(b^{2}-c^{2})}{b^{2}(a^{2}-c^{2})} |
|
(k)^(2) = ((a)^(2)*((b)^(2)- (c)^(2)))/((b)^(2)*((a)^(2)- (c)^(2))) |
(k)^(2) == Divide[(a)^(2)*((b)^(2)- (c)^(2)),(b)^(2)*((a)^(2)- (c)^(2))] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.33.E4 | \frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}+\frac{z^{2}}{c^{2}+\lambda} = 1 |
|
((x)^(2))/((a)^(2)+ lambda)+((y)^(2))/((b)^(2)+ lambda)+((x + y*I)^(2))/((c)^(2)+ lambda) = 1 |
Divide[(x)^(2),(a)^(2)+ \[Lambda]]+Divide[(y)^(2),(b)^(2)+ \[Lambda]]+Divide[(x + y*I)^(2),(c)^(2)+ \[Lambda]] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.33.E5 | V(\lambda) = Q\CarlsonsymellintRF@{a^{2}+\lambda}{b^{2}+\lambda}{c^{2}+\lambda} |
|
V(lambda) = Q*0.5*int(1/(sqrt(t+(a)^(2)+ lambda)*sqrt(t+(b)^(2)+ lambda)*sqrt(t+(c)^(2)+ lambda)), t = 0..infinity) |
V[\[Lambda]] == Q*EllipticF[ArcCos[Sqrt[(a)^(2)+ \[Lambda]/(c)^(2)+ \[Lambda]]],((c)^(2)+ \[Lambda]-(b)^(2)+ \[Lambda])/((c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda])]/Sqrt[(c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda]] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[-0.01914487900157147, 0.6670953471925876]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.08207662518407155, 0.5134467292285442]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.33.E6 | 1/C = \CarlsonsymellintRF@{a^{2}}{b^{2}}{c^{2}} |
|
1/C = 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(b)^(2))*sqrt(t+(c)^(2))), t = 0..infinity) |
1/C == EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]/Sqrt[(c)^(2)-(a)^(2)] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.33.E7 | L_{c} = 2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}} |
|
L[c] = 2*Pi*a*b*c*int((1)/(sqrt(((a)^(2)+ lambda)*((b)^(2)+ lambda)*((c)^(2)+ lambda)^(3))), lambda = 0..infinity) |
Subscript[L, c] == 2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.33.E7 | 2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}} = V\CarlsonsymellintRD@{a^{2}}{b^{2}}{c^{2}} |
|
Error |
2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None] == V*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))])/(((c)^(2)-(b)^(2))*((c)^(2)-(a)^(2))^(1/2)) |
Missing Macro Error | Aborted | Skip - symbolical successful subtest | Skipped - Because timed out |
19.33.E8 | L_{a}+L_{b}+L_{c} = 4\pi |
|
L[a]+ L[b]+ L[c] = 4*Pi |
Subscript[L, a]+ Subscript[L, b]+ Subscript[L, c] == 4*Pi |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.34.E1 | ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos@@{\theta})^{-1/2}\cos@@{\theta}\diff{\theta} = 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}} |
|
a*b*int(((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*cos(theta))^(- 1/2)* cos(theta), theta = 0..2*Pi) = 2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) |
a*b*Integrate[((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*Cos[\[Theta]])^(- 1/2)* Cos[\[Theta]], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] |
Aborted | Aborted | Skipped - Because timed out | Skipped - Because timed out |
19.34.E1 | 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}} = 2abI(\mathbf{e}_{5}) |
|
2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) = 2*abI(e[5]) |
2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] == 2*abI[Subscript[e, 5]] |
Failure | Aborted | Failed [300 / 300] Result: -3.959693187-6.593729744*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = 1/2*3^(1/2)+1/2*I} Result: 2.187421133-4.946615428*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = -1/2+1/2*I*3^(1/2)} ... skip entries to safe data |
Skipped - Because timed out |
19.34#Ex1 | a_{3} = h^{2}+a^{2}+b^{2} |
|
a[3] = (h)^(2)+ (a)^(2)+ (b)^(2) |
Subscript[a, 3] == (h)^(2)+ (a)^(2)+ (b)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.34#Ex2 | a_{5} = 0 |
|
a[5] = 0 |
Subscript[a, 5] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.34#Ex3 | b_{5} = 1 |
|
b[5] = 1 |
Subscript[b, 5] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.34.E3 | 2abI(\mathbf{e}_{5}) = a_{3}I(\boldsymbol{{0}})-I(\mathbf{e}_{3}) |
|
2*abI(e[5]) = a[3]*I(0)- I(e[3]) |
2*abI[Subscript[e, 5]] == Subscript[a, 3]*I[0]- I[Subscript[e, 3]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.34.E4 | r_{+}^{2} = a_{3}+ 2ab |
|
(r[+])^(2) = a[3]+ 2*a*b |
(Subscript[r, +])^(2) == Subscript[a, 3]+ 2*a*b |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E3 | \CarlsonsymellintRF@{1}{2}{4} = \CarlsonsymellintRF@{z_{1}}{z_{2}}{z_{3}} |
|
0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.5*int(1/(sqrt(t+z[1])*sqrt(t+z[2])*sqrt(t+z[3])), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == EllipticF[ArcCos[Sqrt[Subscript[z, 1]/Subscript[z, 3]]],(Subscript[z, 3]-Subscript[z, 2])/(Subscript[z, 3]-Subscript[z, 1])]/Sqrt[Subscript[z, 3]-Subscript[z, 1]] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.6113291272616378, 0.7460602493090597]
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.36.E4 |
\begin{aligned} \displaystyle z_{1}&\displaystyle = 2.10985\;99098\;8,\\ \displaystyle z_{3}&\displaystyle |
|
Skipped - no semantic math | Skipped - no semantic math | - | - | ||
19.36.E5 | \CarlsonsymellintRF@{1}{2}{4} = 0.68508\;58166\dots |
|
0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.6850858166 |
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 0.6850858166 |
Failure | Failure | Successful [Tested: 0] | Successful [Tested: 1] |
19.36#Ex1 | 2a_{n+1} = a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}} |
|
2*a[n + 1] = a[n]+sqrt((a[n])^(2)- (c[n])^(2)) |
2*Subscript[a, n + 1] == Subscript[a, n]+Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex2 | 2c_{n+1} = a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}} |
|
2*c[n + 1] = a[n]-sqrt((a[n])^(2)- (c[n])^(2)) |
2*Subscript[c, n + 1] == Subscript[a, n]-Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex3 | 2t_{n+1} = t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}} |
|
2*t[n + 1] = t[n]+sqrt((t[n])^(2)+ theta*(c[n])^(2)) |
2*Subscript[t, n + 1] == Subscript[t, n]+Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex4 | 0 < c_{0} |
|
0 < c[0] |
0 < Subscript[c, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex5 | t_{0} \geq 0 |
|
t[0] >= 0 |
Subscript[t, 0] >= 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex6 | t_{0}^{2}+\theta a_{0}^{2} \geq 0 |
|
(t[0])^(2)+ theta*(a[0])^(2) >= 0 |
(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2) >= 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex7 | \theta = + 1 |
|
theta = + 1 |
\[Theta] == + 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E9 | \CarlsonsymellintRF@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} |
|
0.5*int(1/(sqrt(t+(t[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(c[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(a[0])^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(T)^(2))*sqrt(t+(T)^(2))*sqrt(t+(T)^(2)+ theta*(M)^(2))), t = 0..infinity) |
EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]/Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)] == EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] |
Error | Failure | - | Failed [300 / 300]
Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.36.E9 | \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} = \CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}} |
|
Error |
EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))] |
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-1.634056915706757, -0.008820605997006181]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-1.6914869520542948, 0.13073697514602478]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.36#Ex9 | a_{3}^{2} = 2.46209\;30206\;0 |
|
(a[3])^(2) = 2.46209302060 |
(Subscript[a, 3])^(2) == 2.46209302060 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex10 | t_{3}^{2} = 1.46971\;53173\;1 |
|
(t[3])^(2) = 1.46971531731 |
(Subscript[t, 3])^(2) == 1.46971531731 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E11 | \CarlsonsymellintRF@{1}{2}{4} = \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} |
|
Error |
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] |
Missing Macro Error | Failure | - | Failed [100 / 100]
Result: Complex[-0.841498016533642, 0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[-0.8857105197615976, -2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.36.E11 | \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} = 0.68508\;58166 |
|
Error |
1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] == 0.6850858166 |
Missing Macro Error | Failure | - | Failed [100 / 100]
Result: Complex[0.8414980165670778, -0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]} Result: Complex[0.8857105197950335, 2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]} ... skip entries to safe data |
19.36#Ex11 | h_{n} = \sqrt{t_{n}^{2}+\theta a_{n}^{2}} |
|
h[n] = sqrt((t[n])^(2)+ theta*(a[n])^(2)) |
Subscript[h, n] == Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[a, n])^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36#Ex12 | h_{n} = h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c_{n}^{2}}} |
|
h[n] = h[n - 1]*(t[n])/(sqrt((t[n])^(2)+ theta*(c[n])^(2))) |
Subscript[h, n] == Subscript[h, n - 1]*Divide[Subscript[t, n],Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.36.E13 | 2\CarlsonsymellintRG@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{m-1}c_{m}^{2}\right)\CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}+h_{0}+\sum_{m=1}^{\infty}2^{m}(h_{m}-h_{m-1}) |
|
Error |
2*Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]^2]) == ((Subscript[t, 0])^(2)+ \[Theta]*Sum[(2)^(m - 1)* (Subscript[c, m])^(2), {m, 0, Infinity}, GenerateConditions->None])*1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]+ Subscript[h, 0]+ Sum[(2)^(m)*(Subscript[h, m]- Subscript[h, m - 1]), {m, 1, Infinity}, GenerateConditions->None] |
Missing Macro Error | Aborted | - | Failed [1 / 1]
|