Results of Elliptic Integrals II: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 439: Line 439:
| [https://dlmf.nist.gov/19.27#Ex6 19.27#Ex6] || [[Item:Q6593|<math>h = (yz)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h = (yz)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h = (y*(x + y*I))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h == (y*(x + y*I))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/19.27#Ex6 19.27#Ex6] || [[Item:Q6593|<math>h = (yz)^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h = (yz)^{1/2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h = (y*(x + y*I))^(1/2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h == (y*(x + y*I))^(1/2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/19.28.E1 19.28.E1] || [[Item:Q6609|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{(\tfrac{1}{2})} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+1.162857938*I
| [https://dlmf.nist.gov/19.28.E1 19.28.E1] || [[Item:Q6609|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+1.162857938*I
Test Values: {sigma = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.9984297790*I
Test Values: {sigma = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(undefined)+.9984297790*I
Test Values: {sigma = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {sigma = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/19.28.E2 19.28.E2] || [[Item:Q6610|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{(\tfrac{1}{2})} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/19.28.E2 19.28.E2] || [[Item:Q6610|<math>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/19.28.E3 19.28.E3] || [[Item:Q6611|<math>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{(\tfrac{1}{2})} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/19.28.E3 19.28.E3] || [[Item:Q6611|<math>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}</syntaxhighlight> || <math>\realpart@@{(\sigma)} > 0, \realpart@@{((\sigma)+b)} > 0, \realpart@@{(a+(\tfrac{1}{2}))} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/19.28.E5 19.28.E5] || [[Item:Q6613|<math>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/19.28.E5 19.28.E5] || [[Item:Q6613|<math>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Missing Macro Error || Aborted || - || Skipped - Because timed out

Latest revision as of 07:16, 25 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.22.E1 R F ( 0 , x 2 , y 2 ) = R F ( 0 , x y , a 2 ) Carlson-integral-RF 0 superscript 𝑥 2 superscript 𝑦 2 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 {\displaystyle{\displaystyle R_{F}\left(0,x^{2},y^{2}\right)=R_{F}\left(0,xy,a% ^{2}\right)}}
\CarlsonsymellintRF@{0}{x^{2}}{y^{2}} = \CarlsonsymellintRF@{0}{xy}{a^{2}}

0.5*int(1/(sqrt(t+0)*sqrt(t+(x)^(2))*sqrt(t+(y)^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+x*y)*sqrt(t+(a)^(2))), t = 0..infinity)
EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]/Sqrt[(y)^(2)-0] == EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
Aborted Failure Skipped - Because timed out
Failed [102 / 108]
Result: Complex[0.1731783664325578, 0.8740191847640398]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[0.4406854652170371, 0.9732684211375591]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -0.5]}

... skip entries to safe data
19.22.E2 2 R G ( 0 , x 2 , y 2 ) = 4 R G ( 0 , x y , a 2 ) - x y R F ( 0 , x y , a 2 ) 2 Carlson-integral-RG 0 superscript 𝑥 2 superscript 𝑦 2 4 Carlson-integral-RG 0 𝑥 𝑦 superscript 𝑎 2 𝑥 𝑦 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 {\displaystyle{\displaystyle 2R_{G}\left(0,x^{2},y^{2}\right)=4R_{G}\left(0,xy% ,a^{2}\right)-xyR_{F}\left(0,xy,a^{2}\right)}}
2\CarlsonsymellintRG@{0}{x^{2}}{y^{2}} = 4\CarlsonsymellintRG@{0}{xy}{a^{2}}-xy\CarlsonsymellintRF@{0}{xy}{a^{2}}

Error
2*Sqrt[(y)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(y)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]+Cot[ArcCos[Sqrt[0/(y)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(y)^(2)]]]^2]) == 4*Sqrt[(a)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(a)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]+Cot[ArcCos[Sqrt[0/(a)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(a)^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
Missing Macro Error Failure -
Failed [108 / 108]
Result: Complex[-0.848574889541176, -1.6278775384876862]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: -2.356194490192345
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.22.E3 2 y 2 R D ( 0 , x 2 , y 2 ) = 1 4 ( y 2 - x 2 ) R D ( 0 , x y , a 2 ) + 3 R F ( 0 , x y , a 2 ) 2 superscript 𝑦 2 Carlson-integral-RD 0 superscript 𝑥 2 superscript 𝑦 2 1 4 superscript 𝑦 2 superscript 𝑥 2 Carlson-integral-RD 0 𝑥 𝑦 superscript 𝑎 2 3 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 {\displaystyle{\displaystyle 2y^{2}R_{D}\left(0,x^{2},y^{2}\right)=\tfrac{1}{4% }(y^{2}-x^{2})R_{D}\left(0,xy,a^{2}\right)+3R_{F}\left(0,xy,a^{2}\right)}}
2y^{2}\CarlsonsymellintRD@{0}{x^{2}}{y^{2}} = \tfrac{1}{4}(y^{2}-x^{2})\CarlsonsymellintRD@{0}{xy}{a^{2}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}}

Error
2*(y)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/(((y)^(2)-(x)^(2))*((y)^(2)-0)^(1/2)) == Divide[1,4]*((y)^(2)- (x)^(2))*3*(EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/(((a)^(2)-x*y)*((a)^(2)-0)^(1/2))+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
Missing Macro Error Failure -
Failed [108 / 108]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.22.E4 ( p + 2 - p - 2 ) R J ( 0 , x 2 , y 2 , p 2 ) = 2 ( p + 2 - a 2 ) R J ( 0 , x y , a 2 , p + 2 ) - 3 R F ( 0 , x y , a 2 ) + 3 π / ( 2 p ) superscript subscript 𝑝 2 superscript subscript 𝑝 2 Carlson-integral-RJ 0 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑝 2 2 superscript subscript 𝑝 2 superscript 𝑎 2 Carlson-integral-RJ 0 𝑥 𝑦 superscript 𝑎 2 superscript subscript 𝑝 2 3 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 3 𝜋 2 𝑝 {\displaystyle{\displaystyle(p_{+}^{2}-p_{-}^{2})R_{J}\left(0,x^{2},y^{2},p^{2% }\right)=2(p_{+}^{2}-a^{2})R_{J}\left(0,xy,a^{2},p_{+}^{2}\right)-3R_{F}\left(% 0,xy,a^{2}\right)+3\pi/(2p)}}
(p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p)

Error
((Subscript[p, +])^(2)- (Subscript[p, -])^(2))*3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 2*((Subscript[p, +])^(2)- (a)^(2))*3*((a)^(2)-0)/((a)^(2)-(Subscript[p, +])^(2))*(EllipticPi[((a)^(2)-(Subscript[p, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p)
Missing Macro Error Failure - Error
19.22.E4 ( p - 2 - p + 2 ) R J ( 0 , x 2 , y 2 , p 2 ) = 2 ( p - 2 - a 2 ) R J ( 0 , x y , a 2 , p - 2 ) - 3 R F ( 0 , x y , a 2 ) + 3 π / ( 2 p ) superscript subscript 𝑝 2 superscript subscript 𝑝 2 Carlson-integral-RJ 0 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑝 2 2 superscript subscript 𝑝 2 superscript 𝑎 2 Carlson-integral-RJ 0 𝑥 𝑦 superscript 𝑎 2 superscript subscript 𝑝 2 3 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 3 𝜋 2 𝑝 {\displaystyle{\displaystyle(p_{-}^{2}-p_{+}^{2})R_{J}\left(0,x^{2},y^{2},p^{2% }\right)=2(p_{-}^{2}-a^{2})R_{J}\left(0,xy,a^{2},p_{-}^{2}\right)-3R_{F}\left(% 0,xy,a^{2}\right)+3\pi/(2p)}}
(p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{0}{xy}{a^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{0}{xy}{a^{2}}+3\pi/(2p)

Error
((Subscript[p, -])^(2)- (Subscript[p, +])^(2))*3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == 2*((Subscript[p, -])^(2)- (a)^(2))*3*((a)^(2)-0)/((a)^(2)-(Subscript[p, -])^(2))*(EllipticPi[((a)^(2)-(Subscript[p, -])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]- 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]+ 3*Pi/(2*p)
Missing Macro Error Failure - Error
19.22#Ex1 p + p - = p a subscript 𝑝 subscript 𝑝 𝑝 𝑎 {\displaystyle{\displaystyle p_{+}p_{-}=pa}}
p_{+}p_{-} = pa

p[+]*p[-] = p*a
Subscript[p, +]*Subscript[p, -] == p*a
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex2 p + 2 + p - 2 = p 2 + x y superscript subscript 𝑝 2 superscript subscript 𝑝 2 superscript 𝑝 2 𝑥 𝑦 {\displaystyle{\displaystyle p_{+}^{2}+p_{-}^{2}=p^{2}+xy}}
p_{+}^{2}+p_{-}^{2} = p^{2}+xy

(p[+])^(2)+ (p[-])^(2) = (p)^(2)+ x*y
(Subscript[p, +])^(2)+ (Subscript[p, -])^(2) == (p)^(2)+ x*y
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex3 p + 2 - p - 2 = ( p 2 - x 2 ) ( p 2 - y 2 ) superscript subscript 𝑝 2 superscript subscript 𝑝 2 superscript 𝑝 2 superscript 𝑥 2 superscript 𝑝 2 superscript 𝑦 2 {\displaystyle{\displaystyle p_{+}^{2}-p_{-}^{2}=\sqrt{(p^{2}-x^{2})(p^{2}-y^{% 2})}}}
p_{+}^{2}-p_{-}^{2} = \sqrt{(p^{2}-x^{2})(p^{2}-y^{2})}

(p[+])^(2)- (p[-])^(2) = sqrt(((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2)))
(Subscript[p, +])^(2)- (Subscript[p, -])^(2) == Sqrt[((p)^(2)- (x)^(2))*((p)^(2)- (y)^(2))]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex4 4 ( p + 2 - a 2 ) = ( p 2 - x 2 + p 2 - y 2 ) 2 4 superscript subscript 𝑝 2 superscript 𝑎 2 superscript superscript 𝑝 2 superscript 𝑥 2 superscript 𝑝 2 superscript 𝑦 2 2 {\displaystyle{\displaystyle 4(p_{+}^{2}-a^{2})=(\sqrt{p^{2}-x^{2}}+\sqrt{p^{2% }-y^{2}})^{2}}}
4(p_{+}^{2}-a^{2}) = (\sqrt{p^{2}-x^{2}}+\sqrt{p^{2}-y^{2}})^{2}

4*((p[+])^(2)- (a)^(2)) = (sqrt((p)^(2)- (x)^(2))+sqrt((p)^(2)- (y)^(2)))^(2)
4*((Subscript[p, +])^(2)- (a)^(2)) == (Sqrt[(p)^(2)- (x)^(2)]+Sqrt[(p)^(2)- (y)^(2)])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.22.E7 2 p 2 R J ( 0 , x 2 , y 2 , p 2 ) = v + v - R J ( 0 , x y , a 2 , v + 2 ) + 3 R F ( 0 , x y , a 2 ) 2 superscript 𝑝 2 Carlson-integral-RJ 0 superscript 𝑥 2 superscript 𝑦 2 superscript 𝑝 2 subscript 𝑣 subscript 𝑣 Carlson-integral-RJ 0 𝑥 𝑦 superscript 𝑎 2 subscript superscript 𝑣 2 3 Carlson-integral-RF 0 𝑥 𝑦 superscript 𝑎 2 {\displaystyle{\displaystyle 2p^{2}R_{J}\left(0,x^{2},y^{2},p^{2}\right)=v_{+}% v_{-}R_{J}\left(0,xy,a^{2},v^{2}_{+}\right)+3R_{F}\left(0,xy,a^{2}\right)}}
2p^{2}\CarlsonsymellintRJ@{0}{x^{2}}{y^{2}}{p^{2}} = v_{+}v_{-}\CarlsonsymellintRJ@{0}{xy}{a^{2}}{v^{2}_{+}}+3\CarlsonsymellintRF@{0}{xy}{a^{2}}
v + = ( p 2 + x y ) / ( 2 p ) , v - = ( p 2 - x y ) / ( 2 p ) formulae-sequence subscript 𝑣 superscript 𝑝 2 𝑥 𝑦 2 𝑝 subscript 𝑣 superscript 𝑝 2 𝑥 𝑦 2 𝑝 {\displaystyle{\displaystyle v_{+}=(p^{2}+xy)/(2p),v_{-}=(p^{2}-xy)/(2p)}}
Error
2*(p)^(2)* 3*((y)^(2)-0)/((y)^(2)-(p)^(2))*(EllipticPi[((y)^(2)-(p)^(2))/((y)^(2)-0),ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(y)^(2)]],((y)^(2)-(x)^(2))/((y)^(2)-0)])/Sqrt[(y)^(2)-0] == Subscript[v, +]*Subscript[v, -]*3*((a)^(2)-0)/((a)^(2)-(Subscript[v, +])^(2))*(EllipticPi[((a)^(2)-(Subscript[v, +])^(2))/((a)^(2)-0),ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]-EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)])/Sqrt[(a)^(2)-0]+ 3*EllipticF[ArcCos[Sqrt[0/(a)^(2)]],((a)^(2)-x*y)/((a)^(2)-0)]/Sqrt[(a)^(2)-0]
Missing Macro Error Failure - Error
19.22.E8 2 π R F ( 0 , a 0 2 , g 0 2 ) = 1 M ( a 0 , g 0 ) 2 𝜋 Carlson-integral-RF 0 superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 1 arithmetic-geometric-mean subscript 𝑎 0 subscript 𝑔 0 {\displaystyle{\displaystyle\frac{2}{\pi}R_{F}\left(0,a_{0}^{2},g_{0}^{2}% \right)=\frac{1}{M\left(a_{0},g_{0}\right)}}}
\frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} = \frac{1}{\AGM@{a_{0}}{g_{0}}}

(2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity) = (1)/(GaussAGM(a[0], g[0]))
Error
Aborted Missing Macro Error Skipped - Because timed out -
19.22.E9 1 M ( a 0 , g 0 ) ( a 0 2 - n = 0 2 n - 1 c n 2 ) = 1 M ( a 0 , g 0 ) ( a 1 2 - n = 2 2 n - 1 c n 2 ) 1 arithmetic-geometric-mean subscript 𝑎 0 subscript 𝑔 0 superscript subscript 𝑎 0 2 superscript subscript 𝑛 0 superscript 2 𝑛 1 superscript subscript 𝑐 𝑛 2 1 arithmetic-geometric-mean subscript 𝑎 0 subscript 𝑔 0 superscript subscript 𝑎 1 2 superscript subscript 𝑛 2 superscript 2 𝑛 1 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle\frac{1}{M\left(a_{0},g_{0}\right)}\left(a_{0}^{2}% -\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right)=\frac{1}{M\left(a_{0},g_{0}\right)% }\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)}}
\frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{0}^{2}-\sum_{n=0}^{\infty}2^{n-1}c_{n}^{2}\right) = \frac{1}{\AGM@{a_{0}}{g_{0}}}\left(a_{1}^{2}-\sum_{n=2}^{\infty}2^{n-1}c_{n}^{2}\right)

(1)/(GaussAGM(a[0], g[0]))*((a[0])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 0..infinity)) = (1)/(GaussAGM(a[0], g[0]))*((a[1])^(2)- sum((2)^(n - 1)* (c[n])^(2), n = 2..infinity))
Error
Failure Missing Macro Error Error -
19.22#Ex5 Q 0 = 1 subscript 𝑄 0 1 {\displaystyle{\displaystyle Q_{0}=1}}
Q_{0} = 1

Q[0] = 1
Subscript[Q, 0] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex6 Q n + 1 = 1 2 Q n a n - g n a n + g n subscript 𝑄 𝑛 1 1 2 subscript 𝑄 𝑛 subscript 𝑎 𝑛 subscript 𝑔 𝑛 subscript 𝑎 𝑛 subscript 𝑔 𝑛 {\displaystyle{\displaystyle Q_{n+1}=\tfrac{1}{2}Q_{n}\frac{a_{n}-g_{n}}{a_{n}% +g_{n}}}}
Q_{n+1} = \tfrac{1}{2}Q_{n}\frac{a_{n}-g_{n}}{a_{n}+g_{n}}

Q[n + 1] = (1)/(2)*Q[n]*(a[n]- g[n])/(a[n]+ g[n])
Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Divide[Subscript[a, n]- Subscript[g, n],Subscript[a, n]+ Subscript[g, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex7 p n + 1 = p n 2 + a n g n 2 p n subscript 𝑝 𝑛 1 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 2 subscript 𝑝 𝑛 {\displaystyle{\displaystyle p_{n+1}=\frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}}}
p_{n+1} = \frac{p_{n}^{2}+a_{n}g_{n}}{2p_{n}}

p[n + 1] = ((p[n])^(2)+ a[n]*g[n])/(2*p[n])
Subscript[p, n + 1] == Divide[(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n],2*Subscript[p, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex8 ε n = p n 2 - a n g n p n 2 + a n g n subscript 𝜀 𝑛 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 superscript subscript 𝑝 𝑛 2 subscript 𝑎 𝑛 subscript 𝑔 𝑛 {\displaystyle{\displaystyle\varepsilon_{n}=\frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^% {2}+a_{n}g_{n}}}}
\varepsilon_{n} = \frac{p_{n}^{2}-a_{n}g_{n}}{p_{n}^{2}+a_{n}g_{n}}

varepsilon[n] = ((p[n])^(2)- a[n]*g[n])/((p[n])^(2)+ a[n]*g[n])
Subscript[\[CurlyEpsilon], n] == Divide[(Subscript[p, n])^(2)- Subscript[a, n]*Subscript[g, n],(Subscript[p, n])^(2)+ Subscript[a, n]*Subscript[g, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex9 Q 0 = 1 subscript 𝑄 0 1 {\displaystyle{\displaystyle Q_{0}=1}}
Q_{0} = 1

Q[0] = 1
Subscript[Q, 0] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex10 Q n + 1 = 1 2 Q n ε n subscript 𝑄 𝑛 1 1 2 subscript 𝑄 𝑛 subscript 𝜀 𝑛 {\displaystyle{\displaystyle Q_{n+1}=\tfrac{1}{2}Q_{n}\varepsilon_{n}}}
Q_{n+1} = \tfrac{1}{2}Q_{n}\varepsilon_{n}

Q[n + 1] = (1)/(2)*Q[n]*varepsilon[n]
Subscript[Q, n + 1] == Divide[1,2]*Subscript[Q, n]*Subscript[\[CurlyEpsilon], n]
Skipped - no semantic math Skipped - no semantic math - -
19.22.E15 p 0 2 = a 0 2 ( q 0 2 + g 0 2 ) / ( q 0 2 + a 0 2 ) superscript subscript 𝑝 0 2 superscript subscript 𝑎 0 2 superscript subscript 𝑞 0 2 superscript subscript 𝑔 0 2 superscript subscript 𝑞 0 2 superscript subscript 𝑎 0 2 {\displaystyle{\displaystyle p_{0}^{2}=a_{0}^{2}(q_{0}^{2}+g_{0}^{2})/(q_{0}^{% 2}+a_{0}^{2})}}
p_{0}^{2} = a_{0}^{2}(q_{0}^{2}+g_{0}^{2})/(q_{0}^{2}+a_{0}^{2})

(p[0])^(2) = (a[0])^(2)*((q[0])^(2)+ (g[0])^(2))/((q[0])^(2)+ (a[0])^(2))
(Subscript[p, 0])^(2) == (Subscript[a, 0])^(2)*((Subscript[q, 0])^(2)+ (Subscript[g, 0])^(2))/((Subscript[q, 0])^(2)+ (Subscript[a, 0])^(2))
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex11 a = ( x + y ) / 2 𝑎 𝑥 𝑦 2 {\displaystyle{\displaystyle a=(x+y)/2}}
a = (x+y)/2

a = (x + y)/2
a == (x + y)/2
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex12 2 z + = ( z + x ) ( z + y ) + ( z - x ) ( z - y ) 2 subscript 𝑧 𝑧 𝑥 𝑧 𝑦 𝑧 𝑥 𝑧 𝑦 {\displaystyle{\displaystyle 2z_{+}=\sqrt{(z+x)(z+y)}+\sqrt{(z-x)(z-y)}}}
2z_{+} = \sqrt{(z+x)(z+y)}+\sqrt{(z-x)(z-y)}

2*x + y*I[+] = sqrt(((x + y*I)+ x)*((x + y*I)+ y))+sqrt(((x + y*I)- x)*((x + y*I)- y))
2*Subscript[x + y*I, +] == Sqrt[((x + y*I)+ x)*((x + y*I)+ y)]+Sqrt[((x + y*I)- x)*((x + y*I)- y)]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex13 z + z - = z a subscript 𝑧 subscript 𝑧 𝑧 𝑎 {\displaystyle{\displaystyle z_{+}z_{-}=za}}
z_{+}z_{-} = za

z[+]*z[-] = z*a
Subscript[z, +]*Subscript[z, -] == z*a
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex14 z + 2 + z - 2 = z 2 + x y superscript subscript 𝑧 2 superscript subscript 𝑧 2 superscript 𝑧 2 𝑥 𝑦 {\displaystyle{\displaystyle z_{+}^{2}+z_{-}^{2}=z^{2}+xy}}
z_{+}^{2}+z_{-}^{2} = z^{2}+xy

(x + y*I[+])^(2)+(x + y*I[-])^(2) = (x + y*I)^(2)+ x*y
(Subscript[x + y*I, +])^(2)+(Subscript[x + y*I, -])^(2) == (x + y*I)^(2)+ x*y
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex15 z + 2 - z - 2 = ( z 2 - x 2 ) ( z 2 - y 2 ) superscript subscript 𝑧 2 superscript subscript 𝑧 2 superscript 𝑧 2 superscript 𝑥 2 superscript 𝑧 2 superscript 𝑦 2 {\displaystyle{\displaystyle z_{+}^{2}-z_{-}^{2}=\sqrt{(z^{2}-x^{2})(z^{2}-y^{% 2})}}}
z_{+}^{2}-z_{-}^{2} = \sqrt{(z^{2}-x^{2})(z^{2}-y^{2})}

(x + y*I[+])^(2)-(x + y*I[-])^(2) = sqrt(((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2)))
(Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2) == Sqrt[((x + y*I)^(2)- (x)^(2))*((x + y*I)^(2)- (y)^(2))]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex16 4 ( z + 2 - a 2 ) = ( z 2 - x 2 + z 2 - y 2 ) 2 4 superscript subscript 𝑧 2 superscript 𝑎 2 superscript superscript 𝑧 2 superscript 𝑥 2 superscript 𝑧 2 superscript 𝑦 2 2 {\displaystyle{\displaystyle 4(z_{+}^{2}-a^{2})=(\sqrt{z^{2}-x^{2}}+\sqrt{z^{2% }-y^{2}})^{2}}}
4(z_{+}^{2}-a^{2}) = (\sqrt{z^{2}-x^{2}}+\sqrt{z^{2}-y^{2}})^{2}

4*((x + y*I[+])^(2)- (a)^(2)) = (sqrt((x + y*I)^(2)- (x)^(2))+sqrt((x + y*I)^(2)- (y)^(2)))^(2)
4*((Subscript[x + y*I, +])^(2)- (a)^(2)) == (Sqrt[(x + y*I)^(2)- (x)^(2)]+Sqrt[(x + y*I)^(2)- (y)^(2)])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.22.E18 R F ( x 2 , y 2 , z 2 ) = R F ( a 2 , z - 2 , z + 2 ) Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 Carlson-integral-RF superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 {\displaystyle{\displaystyle R_{F}\left(x^{2},y^{2},z^{2}\right)=R_{F}\left(a^% {2},z_{-}^{2},z_{+}^{2}\right)}}
\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}} = \CarlsonsymellintRF@{a^{2}}{z_{-}^{2}}{z_{+}^{2}}

0.5*int(1/(sqrt(t+(x)^(2))*sqrt(t+(y)^(2))*sqrt(t+(x + y*I)^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(x + y*I[-])^(2))*sqrt(t+(x + y*I[+])^(2))), t = 0..infinity)
EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)] == EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))]/Sqrt[(Subscript[x + y*I, +])^(2)-(a)^(2)]
Error Failure - Error
19.22.E19 ( z + 2 - z - 2 ) R D ( x 2 , y 2 , z 2 ) = 2 ( z + 2 - a 2 ) R D ( a 2 , z - 2 , z + 2 ) - 3 R F ( x 2 , y 2 , z 2 ) + ( 3 / z ) superscript subscript 𝑧 2 superscript subscript 𝑧 2 Carlson-integral-RD superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 2 superscript subscript 𝑧 2 superscript 𝑎 2 Carlson-integral-RD superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 3 Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 3 𝑧 {\displaystyle{\displaystyle(z_{+}^{2}-z_{-}^{2})R_{D}\left(x^{2},y^{2},z^{2}% \right)={2(z_{+}^{2}-a^{2})}R_{D}\left(a^{2},z_{-}^{2},z_{+}^{2}\right)-3R_{F}% \left(x^{2},y^{2},z^{2}\right)+(3/z)}}
(z_{+}^{2}-z_{-}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{+}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{-}^{2}}{z_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z)

Error
((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))*3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) == 2*((Subscript[x + y*I, +])^(2)- (a)^(2))*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, +])^(2)]],((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))/((Subscript[x + y*I, +])^(2)-(a)^(2))])/(((Subscript[x + y*I, +])^(2)-(Subscript[x + y*I, -])^(2))*((Subscript[x + y*I, +])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I))
Missing Macro Error Failure - Error
19.22.E19 ( z - 2 - z + 2 ) R D ( x 2 , y 2 , z 2 ) = 2 ( z - 2 - a 2 ) R D ( a 2 , z + 2 , z - 2 ) - 3 R F ( x 2 , y 2 , z 2 ) + ( 3 / z ) superscript subscript 𝑧 2 superscript subscript 𝑧 2 Carlson-integral-RD superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 2 superscript subscript 𝑧 2 superscript 𝑎 2 Carlson-integral-RD superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 3 Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 3 𝑧 {\displaystyle{\displaystyle(z_{-}^{2}-z_{+}^{2})R_{D}\left(x^{2},y^{2},z^{2}% \right)={2(z_{-}^{2}-a^{2})}R_{D}\left(a^{2},z_{+}^{2},z_{-}^{2}\right)-3R_{F}% \left(x^{2},y^{2},z^{2}\right)+(3/z)}}
(z_{-}^{2}-z_{+}^{2})\CarlsonsymellintRD@{x^{2}}{y^{2}}{z^{2}} = {2(z_{-}^{2}-a^{2})}\CarlsonsymellintRD@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+(3/z)

Error
((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))*3*(EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/(((x + y*I)^(2)-(y)^(2))*((x + y*I)^(2)-(x)^(2))^(1/2)) == 2*((Subscript[x + y*I, -])^(2)- (a)^(2))*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/(((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))*((Subscript[x + y*I, -])^(2)-(a)^(2))^(1/2))- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+(3/(x + y*I))
Missing Macro Error Failure - Error
19.22.E20 ( p + 2 - p - 2 ) R J ( x 2 , y 2 , z 2 , p 2 ) = 2 ( p + 2 - a 2 ) R J ( a 2 , z + 2 , z - 2 , p + 2 ) - 3 R F ( x 2 , y 2 , z 2 ) + 3 R C ( z 2 , p 2 ) superscript subscript 𝑝 2 superscript subscript 𝑝 2 Carlson-integral-RJ superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 superscript 𝑝 2 2 superscript subscript 𝑝 2 superscript 𝑎 2 Carlson-integral-RJ superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 superscript subscript 𝑝 2 3 Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 3 Carlson-integral-RC superscript 𝑧 2 superscript 𝑝 2 {\displaystyle{\displaystyle(p_{+}^{2}-p_{-}^{2})R_{J}\left(x^{2},y^{2},z^{2},% p^{2}\right)=2(p_{+}^{2}-a^{2})R_{J}\left(a^{2},z_{+}^{2},z_{-}^{2},p_{+}^{2}% \right)-3R_{F}\left(x^{2},y^{2},z^{2}\right)+3R_{C}\left(z^{2},p^{2}\right)}}
(p_{+}^{2}-p_{-}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{+}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{+}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}}

Error
((Subscript[p, +])^(2)- (Subscript[p, -])^(2))*3*((x + y*I)^(2)-(x)^(2))/((x + y*I)^(2)-(p)^(2))*(EllipticPi[((x + y*I)^(2)-(p)^(2))/((x + y*I)^(2)-(x)^(2)),ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/Sqrt[(x + y*I)^(2)-(x)^(2)] == 2*((Subscript[p, +])^(2)- (a)^(2))*3*((Subscript[x + y*I, -])^(2)-(a)^(2))/((Subscript[x + y*I, -])^(2)-(Subscript[p, +])^(2))*(EllipticPi[((Subscript[x + y*I, -])^(2)-(Subscript[p, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))]
Missing Macro Error Failure - Error
19.22.E20 ( p - 2 - p + 2 ) R J ( x 2 , y 2 , z 2 , p 2 ) = 2 ( p - 2 - a 2 ) R J ( a 2 , z + 2 , z - 2 , p - 2 ) - 3 R F ( x 2 , y 2 , z 2 ) + 3 R C ( z 2 , p 2 ) superscript subscript 𝑝 2 superscript subscript 𝑝 2 Carlson-integral-RJ superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 superscript 𝑝 2 2 superscript subscript 𝑝 2 superscript 𝑎 2 Carlson-integral-RJ superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 superscript subscript 𝑝 2 3 Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 3 Carlson-integral-RC superscript 𝑧 2 superscript 𝑝 2 {\displaystyle{\displaystyle(p_{-}^{2}-p_{+}^{2})R_{J}\left(x^{2},y^{2},z^{2},% p^{2}\right)=2(p_{-}^{2}-a^{2})R_{J}\left(a^{2},z_{+}^{2},z_{-}^{2},p_{-}^{2}% \right)-3R_{F}\left(x^{2},y^{2},z^{2}\right)+3R_{C}\left(z^{2},p^{2}\right)}}
(p_{-}^{2}-p_{+}^{2})\CarlsonsymellintRJ@{x^{2}}{y^{2}}{z^{2}}{p^{2}} = 2(p_{-}^{2}-a^{2})\CarlsonsymellintRJ@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}{p_{-}^{2}}-3\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}+3\CarlsonellintRC@{z^{2}}{p^{2}}

Error
((Subscript[p, -])^(2)- (Subscript[p, +])^(2))*3*((x + y*I)^(2)-(x)^(2))/((x + y*I)^(2)-(p)^(2))*(EllipticPi[((x + y*I)^(2)-(p)^(2))/((x + y*I)^(2)-(x)^(2)),ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]-EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))])/Sqrt[(x + y*I)^(2)-(x)^(2)] == 2*((Subscript[p, -])^(2)- (a)^(2))*3*((Subscript[x + y*I, -])^(2)-(a)^(2))/((Subscript[x + y*I, -])^(2)-(Subscript[p, -])^(2))*(EllipticPi[((Subscript[x + y*I, -])^(2)-(Subscript[p, -])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2)),ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]-EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))])/Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]- 3*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]+ 3*1/Sqrt[(p)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x + y*I)^(2))/((p)^(2))]
Missing Macro Error Failure - Error
19.22.E21 2 R G ( x 2 , y 2 , z 2 ) = 4 R G ( a 2 , z + 2 , z - 2 ) - x y R F ( x 2 , y 2 , z 2 ) - z 2 Carlson-integral-RG superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 4 Carlson-integral-RG superscript 𝑎 2 superscript subscript 𝑧 2 superscript subscript 𝑧 2 𝑥 𝑦 Carlson-integral-RF superscript 𝑥 2 superscript 𝑦 2 superscript 𝑧 2 𝑧 {\displaystyle{\displaystyle 2R_{G}\left(x^{2},y^{2},z^{2}\right)=4R_{G}\left(% a^{2},z_{+}^{2},z_{-}^{2}\right)-xyR_{F}\left(x^{2},y^{2},z^{2}\right)-z}}
2\CarlsonsymellintRG@{x^{2}}{y^{2}}{z^{2}} = 4\CarlsonsymellintRG@{a^{2}}{z_{+}^{2}}{z_{-}^{2}}-xy\CarlsonsymellintRF@{x^{2}}{y^{2}}{z^{2}}-z

Error
2*Sqrt[(x + y*I)^(2)-(x)^(2)]*(EllipticE[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+(Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]+Cot[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]]]^2]) == 4*Sqrt[(Subscript[x + y*I, -])^(2)-(a)^(2)]*(EllipticE[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]+(Cot[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]],((Subscript[x + y*I, -])^(2)-(Subscript[x + y*I, +])^(2))/((Subscript[x + y*I, -])^(2)-(a)^(2))]+Cot[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(2)/(Subscript[x + y*I, -])^(2)]]]^2])- x*y*EllipticF[ArcCos[Sqrt[(x)^(2)/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-(x)^(2))]/Sqrt[(x + y*I)^(2)-(x)^(2)]-(x + y*I)
Missing Macro Error Failure - Error
19.22.E22 R C ( x 2 , y 2 ) = R C ( a 2 , a y ) Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 Carlson-integral-RC superscript 𝑎 2 𝑎 𝑦 {\displaystyle{\displaystyle R_{C}\left(x^{2},y^{2}\right)=R_{C}\left(a^{2},ay% \right)}}
\CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}

Error
1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)]
Missing Macro Error Failure -
Failed [108 / 108]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, -1.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.22#Ex17 x + y = 2 a 𝑥 𝑦 2 𝑎 {\displaystyle{\displaystyle x+y=2a}}
x+y = 2a

x + y = 2*a
x + y == 2*a
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex18 x - y = ( 2 / a ) ( a 2 - z + 2 ) ( a 2 - z - 2 ) 𝑥 𝑦 2 𝑎 superscript 𝑎 2 superscript subscript 𝑧 2 superscript 𝑎 2 superscript subscript 𝑧 2 {\displaystyle{\displaystyle x-y=(\ifrac{2}{a})\sqrt{(a^{2}-z_{+}^{2})(a^{2}-z% _{-}^{2})}}}
x-y = (\ifrac{2}{a})\sqrt{(a^{2}-z_{+}^{2})(a^{2}-z_{-}^{2})}

x - y = ((2)/(a))*sqrt(((a)^(2)-(x + y*I[+])^(2))*((a)^(2)-(x + y*I[-])^(2)))
x - y == (Divide[2,a])*Sqrt[((a)^(2)-(Subscript[x + y*I, +])^(2))*((a)^(2)-(Subscript[x + y*I, -])^(2))]
Skipped - no semantic math Skipped - no semantic math - -
19.22#Ex19 z = z + z - / a 𝑧 subscript 𝑧 subscript 𝑧 𝑎 {\displaystyle{\displaystyle z=\ifrac{z_{+}z_{-}}{a}}}
z = \ifrac{z_{+}z_{-}}{a}

z = (z[+]*z[-])/(a)
z == Divide[Subscript[z, +]*Subscript[z, -],a]
Skipped - no semantic math Skipped - no semantic math - -
19.23.E1 R F ( 0 , y , z ) = 0 π / 2 ( y cos 2 θ + z sin 2 θ ) - 1 / 2 d θ Carlson-integral-RF 0 𝑦 𝑧 superscript subscript 0 𝜋 2 superscript 𝑦 2 𝜃 𝑧 2 𝜃 1 2 𝜃 {\displaystyle{\displaystyle R_{F}\left(0,y,z\right)=\int_{0}^{\pi/2}(y{\cos^{% 2}}\theta+z{\sin^{2}}\theta)^{-1/2}\mathrm{d}\theta}}
\CarlsonsymellintRF@{0}{y}{z} = \int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-1/2}\diff{\theta}

0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int((y*(cos(theta))^(2)+(x + y*I)*(sin(theta))^(2))^(- 1/2), theta = 0..Pi/2)
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out
Failed [18 / 18]
Result: Complex[0.8397393007192011, 1.792316631638506]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[-1.057179647328743, -0.8381019542468571]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.23.E2 R G ( 0 , y , z ) = 1 2 0 π / 2 ( y cos 2 θ + z sin 2 θ ) 1 / 2 d θ Carlson-integral-RG 0 𝑦 𝑧 1 2 superscript subscript 0 𝜋 2 superscript 𝑦 2 𝜃 𝑧 2 𝜃 1 2 𝜃 {\displaystyle{\displaystyle R_{G}\left(0,y,z\right)=\frac{1}{2}\int_{0}^{\pi/% 2}(y{\cos^{2}}\theta+z{\sin^{2}}\theta)^{1/2}\mathrm{d}\theta}}
\CarlsonsymellintRG@{0}{y}{z} = \frac{1}{2}\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{1/2}\diff{\theta}

Error
Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == Divide[1,2]*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(1/2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [18 / 18]
Result: Plus[Complex[0.5014070071339144, -0.6068932953779227], Times[Complex[1.345607733249115, -0.5573689727459014], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Plus[Complex[-0.9996439786591846, -0.22609983985234913], Times[Complex[1.345607733249115, 0.5573689727459014], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.23.E3 R D ( 0 , y , z ) = 3 0 π / 2 ( y cos 2 θ + z sin 2 θ ) - 3 / 2 sin 2 θ d θ Carlson-integral-RD 0 𝑦 𝑧 3 superscript subscript 0 𝜋 2 superscript 𝑦 2 𝜃 𝑧 2 𝜃 3 2 2 𝜃 𝜃 {\displaystyle{\displaystyle R_{D}\left(0,y,z\right)=3\int_{0}^{\pi/2}(y{\cos^% {2}}\theta+z{\sin^{2}}\theta)^{-3/2}{\sin^{2}}\theta\mathrm{d}\theta}}
\CarlsonsymellintRD@{0}{y}{z} = 3\int_{0}^{\pi/2}(y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta})^{-3/2}\sin^{2}@@{\theta}\diff{\theta}

Error
3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2)) == 3*Integrate[(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))^(- 3/2)* (Sin[\[Theta]])^(2), {\[Theta], 0, Pi/2}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.23.E4 R F ( 0 , y , z ) = 2 π 0 π / 2 R C ( y , z cos 2 θ ) d θ Carlson-integral-RF 0 𝑦 𝑧 2 𝜋 superscript subscript 0 𝜋 2 Carlson-integral-RC 𝑦 𝑧 2 𝜃 𝜃 {\displaystyle{\displaystyle R_{F}\left(0,y,z\right)=\frac{2}{\pi}\int_{0}^{% \pi/2}R_{C}\left(y,z{\cos^{2}}\theta\right)\mathrm{d}\theta}}
\CarlsonsymellintRF@{0}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta}

Error
EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.23.E4 2 π 0 π / 2 R C ( y , z cos 2 θ ) d θ = 2 π 0 R C ( y cosh 2 t , z ) d t 2 𝜋 superscript subscript 0 𝜋 2 Carlson-integral-RC 𝑦 𝑧 2 𝜃 𝜃 2 𝜋 superscript subscript 0 Carlson-integral-RC 𝑦 2 𝑡 𝑧 𝑡 {\displaystyle{\displaystyle\frac{2}{\pi}\int_{0}^{\pi/2}R_{C}\left(y,z{\cos^{% 2}}\theta\right)\mathrm{d}\theta=\frac{2}{\pi}\int_{0}^{\infty}R_{C}\left(y{% \cosh^{2}}t,z\right)\mathrm{d}t}}
\frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{y}{z\cos^{2}@@{\theta}}\diff{\theta} = \frac{2}{\pi}\int_{0}^{\infty}\CarlsonellintRC@{y\cosh^{2}@@{t}}{z}\diff{t}

Error
Divide[2,Pi]*Integrate[1/Sqrt[(x + y*I)*(Cos[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(y)/((x + y*I)*(Cos[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[2,Pi]*Integrate[1/Sqrt[x + y*I]*Hypergeometric2F1[1/2,1/2,3/2,1-(y*(Cosh[t])^(2))/(x + y*I)], {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.23.E5 R F ( x , y , z ) = 2 π 0 π / 2 R C ( x , y cos 2 θ + z sin 2 θ ) d θ Carlson-integral-RF 𝑥 𝑦 𝑧 2 𝜋 superscript subscript 0 𝜋 2 Carlson-integral-RC 𝑥 𝑦 2 𝜃 𝑧 2 𝜃 𝜃 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)=\frac{2}{\pi}\int_{0}^{% \pi/2}R_{C}\left(x,y{\cos^{2}}\theta+z{\sin^{2}}\theta\right)\mathrm{d}\theta}}
\CarlsonsymellintRF@{x}{y}{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\CarlsonellintRC@{x}{y\cos^{2}@@{\theta}+z\sin^{2}@@{\theta}}\diff{\theta}
y > 0 , z > 0 formulae-sequence 𝑦 0 𝑧 0 {\displaystyle{\displaystyle\Re y>0,\Re z>0}}
Error
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Divide[2,Pi]*Integrate[1/Sqrt[y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y*(Cos[\[Theta]])^(2)+(x + y*I)*(Sin[\[Theta]])^(2))], {\[Theta], 0, Pi/2}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.23.E6 4 π R F ( x , y , z ) = 0 2 π 0 π sin θ d θ d ϕ ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 / 2 4 𝜋 Carlson-integral-RF 𝑥 𝑦 𝑧 superscript subscript 0 2 𝜋 superscript subscript 0 𝜋 𝜃 𝜃 italic-ϕ superscript 𝑥 2 𝜃 2 italic-ϕ 𝑦 2 𝜃 2 italic-ϕ 𝑧 2 𝜃 1 2 {\displaystyle{\displaystyle 4\pi R_{F}\left(x,y,z\right)=\int_{0}^{2\pi}\!\!% \!\!\int_{0}^{\pi}\frac{\sin\theta\mathrm{d}\theta\mathrm{d}\phi}{(x{\sin^{2}}% \theta{\cos^{2}}\phi+y{\sin^{2}}\theta{\sin^{2}}\phi+z{\cos^{2}}\theta)^{1/2}}}}
4\pi\CarlsonsymellintRF@{x}{y}{z} = \int_{0}^{2\pi}\!\!\!\!\int_{0}^{\pi}\frac{\sin@@{\theta}\diff{\theta}\diff{\phi}}{(x\sin^{2}@@{\theta}\cos^{2}@@{\phi}+y\sin^{2}@@{\theta}\sin^{2}@@{\phi}+z\cos^{2}@@{\theta})^{1/2}}

4*Pi*0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = int(int((sin(theta))/((x*(sin(theta))^(2)* (cos(phi))^(2)+ y*(sin(theta))^(2)* (sin(phi))^(2)+(x + y*I)*(cos(theta))^(2))^(1/2)), theta = 0..Pi), phi = 0..2*Pi)
4*Pi*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == Integrate[Integrate[Divide[Sin[\[Theta]],(x*(Sin[\[Theta]])^(2)* (Cos[\[Phi]])^(2)+ y*(Sin[\[Theta]])^(2)* (Sin[\[Phi]])^(2)+(x + y*I)*(Cos[\[Theta]])^(2))^(1/2)], {\[Theta], 0, Pi}, GenerateConditions->None], {\[Phi], 0, 2*Pi}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.23.E7 R G ( x , y , z ) = 1 4 0 1 t + x t + y t + z ( x t + x + y t + y + z t + z ) t d t Carlson-integral-RG 𝑥 𝑦 𝑧 1 4 superscript subscript 0 1 𝑡 𝑥 𝑡 𝑦 𝑡 𝑧 𝑥 𝑡 𝑥 𝑦 𝑡 𝑦 𝑧 𝑡 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle R_{G}\left(x,y,z\right)=\frac{1}{4}\int_{0}^{% \infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{% t+y}+\frac{z}{t+z}\right)t\mathrm{d}t}}
\CarlsonsymellintRG@{x}{y}{z} = \frac{1}{4}\int_{0}^{\infty}\frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\*\left(\frac{x}{t+x}+\frac{y}{t+y}+\frac{z}{t+z}\right)t\diff{t}

Error
Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == Divide[1,4]*Integrate[Divide[1,Sqrt[t + x]*Sqrt[t + y]*Sqrt[t +(x + y*I)]]*(Divide[x,t + x]+Divide[y,t + y]+Divide[x + y*I,t +(x + y*I)])*t, {t, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted - Skipped - Because timed out
19.24.E1 ln 4 z R F ( 0 , y , z ) + ln y / z 4 𝑧 Carlson-integral-RF 0 𝑦 𝑧 𝑦 𝑧 {\displaystyle{\displaystyle\ln 4\leq\sqrt{z}R_{F}\left(0,y,z\right)+\ln\sqrt{% y/z}}}
\ln@@{4} \leq \sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}}
0 < y , y z formulae-sequence 0 𝑦 𝑦 𝑧 {\displaystyle{\displaystyle 0<y,y\leq z}}
ln(4) <= sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I)))
Log[4] <= Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]]
Error Failure -
Failed [9 / 9]
Result: LessEqual[1.3862943611198906, Complex[0.5672499697282593, -1.7874177081206242]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[1.3862943611198906, Complex[0.6277320470267476, -0.9602476282953896]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E1 z R F ( 0 , y , z ) + ln y / z 1 2 π 𝑧 Carlson-integral-RF 0 𝑦 𝑧 𝑦 𝑧 1 2 𝜋 {\displaystyle{\displaystyle\sqrt{z}R_{F}\left(0,y,z\right)+\ln\sqrt{y/z}\leq% \tfrac{1}{2}\pi}}
\sqrt{z}\CarlsonsymellintRF@{0}{y}{z}+\ln@@{\sqrt{y/z}} \leq \tfrac{1}{2}\pi
0 < y , y z formulae-sequence 0 𝑦 𝑦 𝑧 {\displaystyle{\displaystyle 0<y,y\leq z}}
sqrt(x + y*I)*0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)+ ln(sqrt(y/(x + y*I))) <= (1)/(2)*Pi
Sqrt[x + y*I]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+ Log[Sqrt[y/(x + y*I)]] <= Divide[1,2]*Pi
Error Failure -
Failed [9 / 9]
Result: LessEqual[Complex[0.5672499697282593, -1.7874177081206242], 1.5707963267948966]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[Complex[0.6277320470267476, -0.9602476282953896], 1.5707963267948966]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E2 1 2 z - 1 / 2 R G ( 0 , y , z ) 1 2 superscript 𝑧 1 2 Carlson-integral-RG 0 𝑦 𝑧 {\displaystyle{\displaystyle\tfrac{1}{2}\leq z^{-1/2}R_{G}\left(0,y,z\right)}}
\tfrac{1}{2} \leq z^{-1/2}\CarlsonsymellintRG@{0}{y}{z}
0 y , y z formulae-sequence 0 𝑦 𝑦 𝑧 {\displaystyle{\displaystyle 0\leq y,y\leq z}}
Error
Divide[1,2] <= (x + y*I)^(- 1/2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2])
Missing Macro Error Failure -
Failed [9 / 9]
Result: LessEqual[0.5, Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[0.5, Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E2 z - 1 / 2 R G ( 0 , y , z ) 1 4 π superscript 𝑧 1 2 Carlson-integral-RG 0 𝑦 𝑧 1 4 𝜋 {\displaystyle{\displaystyle z^{-1/2}R_{G}\left(0,y,z\right)\leq\tfrac{1}{4}% \pi}}
z^{-1/2}\CarlsonsymellintRG@{0}{y}{z} \leq \tfrac{1}{4}\pi
0 y , y z formulae-sequence 0 𝑦 𝑦 𝑧 {\displaystyle{\displaystyle 0\leq y,y\leq z}}
Error
(x + y*I)^(- 1/2)* Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) <= Divide[1,4]*Pi
Missing Macro Error Failure -
Failed [9 / 9]
Result: LessEqual[Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[Plus[Complex[1.0897585107701309, 0.2919625251300463], Times[Complex[0.3515775842541431, 0.5688644810057831], Power[Plus[1.0, Times[Complex[-1.0, 0.5], Power[k, 2]]], Rational[1, 2]]]], 0.7853981633974483]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E3 ( y 3 / 2 + z 3 / 2 2 ) 2 / 3 4 π R G ( 0 , y 2 , z 2 ) superscript superscript 𝑦 3 2 superscript 𝑧 3 2 2 2 3 4 𝜋 Carlson-integral-RG 0 superscript 𝑦 2 superscript 𝑧 2 {\displaystyle{\displaystyle\left(\frac{y^{3/2}+z^{3/2}}{2}\right)^{2/3}\leq% \frac{4}{\pi}R_{G}\left(0,y^{2},z^{2}\right)}}
\left(\frac{y^{3/2}+z^{3/2}}{2}\right)^{2/3} \leq \frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}}
y > 0 , z > 0 formulae-sequence 𝑦 0 𝑧 0 {\displaystyle{\displaystyle y>0,z>0}}
Error
(Divide[(y)^(3/2)+(x + y*I)^(3/2),2])^(2/3) <= Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2])
Missing Macro Error Failure -
Failed [9 / 9]
Result: LessEqual[Complex[1.4250443092558214, 0.7875512141675095], Complex[2.850438542245679, 1.5730146161508307]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[Complex[1.0588191704631045, 0.29794136993360365], Complex[2.118851869395612, 0.5983245902184247]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E3 4 π R G ( 0 , y 2 , z 2 ) ( y 2 + z 2 2 ) 1 / 2 4 𝜋 Carlson-integral-RG 0 superscript 𝑦 2 superscript 𝑧 2 superscript superscript 𝑦 2 superscript 𝑧 2 2 1 2 {\displaystyle{\displaystyle\frac{4}{\pi}R_{G}\left(0,y^{2},z^{2}\right)\leq% \left(\frac{y^{2}+z^{2}}{2}\right)^{1/2}}}
\frac{4}{\pi}\CarlsonsymellintRG@{0}{y^{2}}{z^{2}} \leq \left(\frac{y^{2}+z^{2}}{2}\right)^{1/2}
y > 0 , z > 0 formulae-sequence 𝑦 0 𝑧 0 {\displaystyle{\displaystyle y>0,z>0}}
Error
Divide[4,Pi]*Sqrt[(x + y*I)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(x + y*I)^(2)]],((x + y*I)^(2)-(y)^(2))/((x + y*I)^(2)-0)]+Cot[ArcCos[Sqrt[0/(x + y*I)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(x + y*I)^(2)]]]^2]) <= (Divide[(y)^(2)+(x + y*I)^(2),2])^(1/2)
Missing Macro Error Failure -
Failed [9 / 9]
Result: LessEqual[Complex[2.850438542245679, 1.5730146161508307], Complex[1.3491805799609005, 0.8338394553771318]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

Result: LessEqual[Complex[2.118851869395612, 0.5983245902184247], Complex[1.112897508375995, 0.3369582528288897]]
Test Values: {Rule[x, 1.5], Rule[y, 0.5]}

... skip entries to safe data
19.24.E4 2 p ( 2 y z + y p + z p ) - 1 / 2 4 3 π R J ( 0 , y , z , p ) 2 𝑝 superscript 2 𝑦 𝑧 𝑦 𝑝 𝑧 𝑝 1 2 4 3 𝜋 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 {\displaystyle{\displaystyle\frac{2}{\sqrt{p}}(2yz+yp+zp)^{-1/2}\leq\frac{4}{3% \pi}R_{J}\left(0,y,z,p\right)}}
\frac{2}{\sqrt{p}}(2yz+yp+zp)^{-1/2} \leq \frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p}

Error
Divide[2,Sqrt[p]]*(2*y*(x + y*I)+ y*p +(x + y*I)*p)^(- 1/2) <= Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]
Missing Macro Error Failure -
Failed [180 / 180]
Result: LessEqual[Complex[0.13508456755677706, -1.1829936015765863], Complex[-0.3213270063391195, -0.3051912044731223]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[0.7797231369520263, -0.6247258696161743], Complex[-0.6706782382611747, 0.54526856836685]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E4 4 3 π R J ( 0 , y , z , p ) ( y z p 2 ) - 3 / 8 4 3 𝜋 Carlson-integral-RJ 0 𝑦 𝑧 𝑝 superscript 𝑦 𝑧 superscript 𝑝 2 3 8 {\displaystyle{\displaystyle\frac{4}{3\pi}R_{J}\left(0,y,z,p\right)\leq(yzp^{2% })^{-3/8}}}
\frac{4}{3\pi}\CarlsonsymellintRJ@{0}{y}{z}{p} \leq (yzp^{2})^{-3/8}

Error
Divide[4,3*Pi]*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] <= (y*(x + y*I)*(p)^(2))^(- 3/8)
Missing Macro Error Failure -
Failed [180 / 180]
Result: LessEqual[Complex[-0.3213270063391195, -0.3051912044731223], Complex[0.5136265917030035, 0.9609277658721954]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[-0.6706782382611747, 0.54526856836685], Complex[0.8422602311268256, -0.6912251080442312]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E5 1 a n 2 π R F ( 0 , a 0 2 , g 0 2 ) 1 subscript 𝑎 𝑛 2 𝜋 Carlson-integral-RF 0 superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 {\displaystyle{\displaystyle\frac{1}{a_{n}}\leq\frac{2}{\pi}R_{F}\left(0,a_{0}% ^{2},g_{0}^{2}\right)}}
\frac{1}{a_{n}} \leq \frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}}

(1)/(a[n]) <= (2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity)
Divide[1,Subscript[a, n]] <= Divide[2,Pi]*EllipticF[ArcCos[Sqrt[0/(Subscript[g, 0])^(2)]],((Subscript[g, 0])^(2)-(Subscript[a, 0])^(2))/((Subscript[g, 0])^(2)-0)]/Sqrt[(Subscript[g, 0])^(2)-0]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[1.7320508075688774, -0.9999999999999999], Times[2.0, Power[Times[Complex[-0.4999999999999998, -0.8660254037844387], g], Rational[-1, 2]], EllipticK[Times[Complex[-1.9999999999999991, 3.464101615137755], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[-0.12499999999999994, -0.21650635094610968], g]], Power[g, -1]]]]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.24.E5 2 π R F ( 0 , a 0 2 , g 0 2 ) 1 g n 2 𝜋 Carlson-integral-RF 0 superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 1 subscript 𝑔 𝑛 {\displaystyle{\displaystyle\frac{2}{\pi}R_{F}\left(0,a_{0}^{2},g_{0}^{2}% \right)\leq\frac{1}{g_{n}}}}
\frac{2}{\pi}\CarlsonsymellintRF@{0}{a_{0}^{2}}{g_{0}^{2}} \leq \frac{1}{g_{n}}

(2)/(Pi)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a[0])^(2))*sqrt(t+(g[0])^(2))), t = 0..infinity) <= (1)/(g[n])
Divide[2,Pi]*EllipticF[ArcCos[Sqrt[0/(Subscript[g, 0])^(2)]],((Subscript[g, 0])^(2)-(Subscript[a, 0])^(2))/((Subscript[g, 0])^(2)-0)]/Sqrt[(Subscript[g, 0])^(2)-0] <= Divide[1,Subscript[g, n]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]], Complex[1.7320508075688774, -0.9999999999999999]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Times[2.0, Power[Times[Complex[0.5000000000000001, 0.8660254037844386], g], Rational[-1, 2]], EllipticK[Times[Complex[2.0000000000000004, -3.4641016151377544], Plus[Times[Complex[-0.12500000000000003, -0.21650635094610965], a], Times[Complex[0.12500000000000003, 0.21650635094610965], g]], Power[g, -1]]]], Complex[-0.9999999999999996, -1.7320508075688774]]
Test Values: {Rule[n, 3], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, n], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.24#Ex1 a n + 1 = ( a n + g n ) / 2 subscript 𝑎 𝑛 1 subscript 𝑎 𝑛 subscript 𝑔 𝑛 2 {\displaystyle{\displaystyle a_{n+1}=(a_{n}+g_{n})/2}}
a_{n+1} = (a_{n}+g_{n})/2

a[n + 1] = (a[n]+ g[n])/2
Subscript[a, n + 1] == (Subscript[a, n]+ Subscript[g, n])/2
Skipped - no semantic math Skipped - no semantic math - -
19.24#Ex2 g n + 1 = a n g n subscript 𝑔 𝑛 1 subscript 𝑎 𝑛 subscript 𝑔 𝑛 {\displaystyle{\displaystyle g_{n+1}=\sqrt{a_{n}g_{n}}}}
g_{n+1} = \sqrt{a_{n}g_{n}}

g[n + 1] = sqrt(a[n]*g[n])
Subscript[g, n + 1] == Sqrt[Subscript[a, n]*Subscript[g, n]]
Skipped - no semantic math Skipped - no semantic math - -
19.24.E7 L ( a , b ) = 8 R G ( 0 , a 2 , b 2 ) 𝐿 𝑎 𝑏 8 Carlson-integral-RG 0 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle L(a,b)=8R_{G}\left(0,a^{2},b^{2}\right)}}
L(a,b) = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}}

Error
L[a , b] == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2])
Missing Macro Error Failure - Error
19.24#Ex3 R F ( x , y , 0 ) R G ( x , y , 0 ) > 1 8 π 2 Carlson-integral-RF 𝑥 𝑦 0 Carlson-integral-RG 𝑥 𝑦 0 1 8 superscript 𝜋 2 {\displaystyle{\displaystyle R_{F}\left(x,y,0\right)R_{G}\left(x,y,0\right)>% \tfrac{1}{8}\pi^{2}}}
\CarlsonsymellintRF@{x}{y}{0}\CarlsonsymellintRG@{x}{y}{0} > \tfrac{1}{8}\pi^{2}

Error
EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Divide[1,8]*(Pi)^(2)
Missing Macro Error Failure -
Failed [18 / 18]
Result: Greater[Indeterminate, 1.2337005501361697]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Greater[Indeterminate, 1.2337005501361697]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24#Ex4 R F ( x , y , 0 ) + 2 R G ( x , y , 0 ) > π Carlson-integral-RF 𝑥 𝑦 0 2 Carlson-integral-RG 𝑥 𝑦 0 𝜋 {\displaystyle{\displaystyle R_{F}\left(x,y,0\right)+2R_{G}\left(x,y,0\right)>% \pi}}
\CarlsonsymellintRF@{x}{y}{0}+2\CarlsonsymellintRG@{x}{y}{0} > \pi

Error
EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]/Sqrt[0-x]+ 2*Sqrt[0-x]*(EllipticE[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+(Cot[ArcCos[Sqrt[x/0]]])^2*EllipticF[ArcCos[Sqrt[x/0]],(0-y)/(0-x)]+Cot[ArcCos[Sqrt[x/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/0]]]^2]) > Pi
Missing Macro Error Failure -
Failed [18 / 18]
Result: Greater[Indeterminate, 3.141592653589793]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Greater[Indeterminate, 3.141592653589793]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E9 1 2 g 1 2 R G ( a 0 2 , g 0 2 , 0 ) R F ( a 0 2 , g 0 2 , 0 ) 1 2 superscript subscript 𝑔 1 2 Carlson-integral-RG superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 0 Carlson-integral-RF superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 0 {\displaystyle{\displaystyle\frac{1}{2}\,g_{1}^{2}\leq\frac{R_{G}\left(a_{0}^{% 2},g_{0}^{2},0\right)}{R_{F}\left(a_{0}^{2},g_{0}^{2},0\right)}}}
\frac{1}{2}\,g_{1}^{2} \leq \frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}}

Error
Divide[1,2]*(Subscript[g, 1])^(2) <= Divide[Sqrt[0-(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]/Sqrt[0-(Subscript[a, 0])^(2)]]
Missing Macro Error Failure -
Failed [300 / 300]
Result: LessEqual[Complex[0.06250000000000001, 0.10825317547305482], Indeterminate]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Complex[-0.06249999999999997, -0.10825317547305484], Indeterminate]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.24.E9 R G ( a 0 2 , g 0 2 , 0 ) R F ( a 0 2 , g 0 2 , 0 ) 1 2 a 1 2 Carlson-integral-RG superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 0 Carlson-integral-RF superscript subscript 𝑎 0 2 superscript subscript 𝑔 0 2 0 1 2 superscript subscript 𝑎 1 2 {\displaystyle{\displaystyle\frac{R_{G}\left(a_{0}^{2},g_{0}^{2},0\right)}{R_{% F}\left(a_{0}^{2},g_{0}^{2},0\right)}\leq\frac{1}{2}\,a_{1}^{2}}}
\frac{\CarlsonsymellintRG@{a_{0}^{2}}{g_{0}^{2}}{0}}{\CarlsonsymellintRF@{a_{0}^{2}}{g_{0}^{2}}{0}} \leq \frac{1}{2}\,a_{1}^{2}

Error
Divide[Sqrt[0-(Subscript[a, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]]]^2]),EllipticF[ArcCos[Sqrt[(Subscript[a, 0])^(2)/0]],(0-(Subscript[g, 0])^(2))/(0-(Subscript[a, 0])^(2))]/Sqrt[0-(Subscript[a, 0])^(2)]] <= Divide[1,2]*(Subscript[a, 1])^(2)
Missing Macro Error Failure -
Failed [300 / 300]
Result: LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: LessEqual[Indeterminate, Complex[0.06250000000000001, 0.10825317547305482]]
Test Values: {Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[g, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.24.E10 3 x + y + z R F ( x , y , z ) 3 𝑥 𝑦 𝑧 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\frac{3}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\leq R_{F}% \left(x,y,z\right)}}
\frac{3}{\sqrt{x}+\sqrt{y}+\sqrt{z}} \leq \CarlsonsymellintRF@{x}{y}{z}

(3)/(sqrt(x)+sqrt(y)+sqrt(x + y*I)) <= 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
Divide[3,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Aborted Failure Error
Failed [18 / 18]
Result: LessEqual[Complex[1.0934408788539995, -0.2839050517129825], Complex[-0.16214470973156064, 0.6784437678906974]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[0.7738030002696183, -0.11364498174072818], Complex[-0.28823404661462, -0.7809212115368181]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E10 R F ( x , y , z ) 1 ( x y z ) 1 / 6 Carlson-integral-RF 𝑥 𝑦 𝑧 1 superscript 𝑥 𝑦 𝑧 1 6 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)\leq\frac{1}{(xyz)^{1/6}}}}
\CarlsonsymellintRF@{x}{y}{z} \leq \frac{1}{(xyz)^{1/6}}

0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) <= (1)/((x*y*(x + y*I))^(1/6))
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= Divide[1,(x*y*(x + y*I))^(1/6)]
Aborted Failure Error
Failed [18 / 18]
Result: LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7120063770987297, -0.29492269789042613]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.7640769591692358, -0.10059264002361257]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E11 ( 5 x + y + z + 2 p ) 3 R J ( x , y , z , p ) superscript 5 𝑥 𝑦 𝑧 2 𝑝 3 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 {\displaystyle{\displaystyle\left(\frac{5}{\sqrt{x}+\sqrt{y}+\sqrt{z}+2\sqrt{p% }}\right)^{3}\leq R_{J}\left(x,y,z,p\right)}}
\left(\frac{5}{\sqrt{x}+\sqrt{y}+\sqrt{z}+2\sqrt{p}}\right)^{3} \leq \CarlsonsymellintRJ@{x}{y}{z}{p}

Error
(Divide[5,Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]+ 2*Sqrt[p]])^(3) <= 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]
Missing Macro Error Failure -
Failed [180 / 180]
Result: LessEqual[Complex[1.3310335634294785, -1.2911719373315522], Complex[-0.2876927312707393, -0.327259429717868]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[0.7477899794343462, -0.4392695700678081], Complex[-0.36602768453446033, 0.5058947820270108]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E11 R J ( x , y , z , p ) ( x y z p 2 ) - 3 / 10 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 superscript 𝑥 𝑦 𝑧 superscript 𝑝 2 3 10 {\displaystyle{\displaystyle R_{J}\left(x,y,z,p\right)\leq(xyzp^{2})^{-3/10}}}
\CarlsonsymellintRJ@{x}{y}{z}{p} \leq (xyzp^{2})^{-3/10}

Error
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] <= (x*y*(x + y*I)*(p)^(2))^(- 3/10)
Missing Macro Error Failure -
Failed [180 / 180]
Result: LessEqual[Complex[-0.2876927312707393, -0.327259429717868], Complex[0.6159220908806466, 0.7211521128667333]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[-0.36602768453446033, 0.5058947820270108], Complex[0.8086249764673956, -0.49552602288885395]]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E12 1 3 ( x + y + z ) R G ( x , y , z ) 1 3 𝑥 𝑦 𝑧 Carlson-integral-RG 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\tfrac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})\leq R_{G}% \left(x,y,z\right)}}
\tfrac{1}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z}) \leq \CarlsonsymellintRG@{x}{y}{z}

Error
Divide[1,3]*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I]) <= Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])
Missing Macro Error Failure -
Failed [18 / 18]
Result: LessEqual[Complex[0.8567842015469013, 0.22245863288189585], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[1.2650324920107643, 0.1857896575819671], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24#Ex7 R F ( x , y , z ) R G ( x , y , z ) > 1 Carlson-integral-RF 𝑥 𝑦 𝑧 Carlson-integral-RG 𝑥 𝑦 𝑧 1 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)R_{G}\left(x,y,z\right)>1}}
\CarlsonsymellintRF@{x}{y}{z}\CarlsonsymellintRG@{x}{y}{z} > 1

Error
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 1
Missing Macro Error Failure -
Failed [18 / 18]
Result: Greater[Times[Complex[0.44712810031579164, 0.7279709757493625], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Greater[Times[Complex[0.42667960094115687, -0.925915614148855], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]], 1.0]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24#Ex8 R F ( x , y , z ) + R G ( x , y , z ) > 2 Carlson-integral-RF 𝑥 𝑦 𝑧 Carlson-integral-RG 𝑥 𝑦 𝑧 2 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)+R_{G}\left(x,y,z\right)>2}}
\CarlsonsymellintRF@{x}{y}{z}+\CarlsonsymellintRG@{x}{y}{z} > 2

Error
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]+ Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) > 2
Missing Macro Error Failure -
Failed [18 / 18]
Result: Greater[Plus[Complex[-0.16214470973156064, 0.6784437678906974], Times[Complex[0.8660254037844386, -0.8660254037844385], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Greater[Plus[Complex[-0.28823404661462, -0.7809212115368181], Times[Complex[0.8660254037844386, 0.8660254037844385], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]], 2.0]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E15 R C ( x , 1 2 ( y + z ) ) R F ( x , y , z ) Carlson-integral-RC 𝑥 1 2 𝑦 𝑧 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{C}\left(x,\tfrac{1}{2}(y+z)\right)\leq R_{F}% \left(x,y,z\right)}}
\CarlsonellintRC@{x}{\tfrac{1}{2}(y+z)} \leq \CarlsonsymellintRF@{x}{y}{z}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
1/Sqrt[Divide[1,2]*(y +(x + y*I))]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Divide[1,2]*(y +(x + y*I)))] <= EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Failure -
Failed [18 / 18]
Result: LessEqual[Complex[0.9580693887321644, 0.49152363500125495], Complex[-0.16214470973156064, 0.6784437678906974]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[0.7805167095081702, -0.12346643314922054], Complex[-0.28823404661462, -0.7809212115368181]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.24.E15 R F ( x , y , z ) R C ( x , y z ) Carlson-integral-RF 𝑥 𝑦 𝑧 Carlson-integral-RC 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)\leq R_{C}\left(x,\sqrt{yz% }\right)}}
\CarlsonsymellintRF@{x}{y}{z} \leq \CarlsonellintRC@{x}{\sqrt{yz}}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] <= 1/Sqrt[Sqrt[y*(x + y*I)]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(Sqrt[y*(x + y*I)])]
Missing Macro Error Failure -
Failed [18 / 18]
Result: LessEqual[Complex[-0.16214470973156064, 0.6784437678906974], Complex[0.7308447207533646, -0.31118718328917466]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: LessEqual[Complex[-0.28823404661462, -0.7809212115368181], Complex[0.765857524311696, -0.1031964554328576]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.25#Ex1 K ( k ) = R F ( 0 , k 2 , 1 ) complete-elliptic-integral-first-kind-K 𝑘 Carlson-integral-RF 0 superscript superscript 𝑘 2 1 {\displaystyle{\displaystyle K\left(k\right)=R_{F}\left(0,{k^{\prime}}^{2},1% \right)}}
\compellintKk@{k} = \CarlsonsymellintRF@{0}{{k^{\prime}}^{2}}{1}

EllipticK(k) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - (k)^(2))*sqrt(t+1)), t = 0..infinity)
EllipticK[(k)^2] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]/Sqrt[1-0]
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[-0.16657773258291342, -1.0782578237498217]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25#Ex2 E ( k ) = 2 R G ( 0 , k 2 , 1 ) complete-elliptic-integral-second-kind-E 𝑘 2 Carlson-integral-RG 0 superscript superscript 𝑘 2 1 {\displaystyle{\displaystyle E\left(k\right)=2R_{G}\left(0,{k^{\prime}}^{2},1% \right)}}
\compellintEk@{k} = 2\CarlsonsymellintRG@{0}{{k^{\prime}}^{2}}{1}

Error
EllipticE[(k)^2] == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])
Missing Macro Error Failure -
Failed [3 / 3]
Result: -2.820197789027711
Test Values: {Rule[k, 1]}

Result: Complex[-4.864068276731299, 1.343854231387098]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25#Ex3 E ( k ) = 1 3 k 2 ( R D ( 0 , k 2 , 1 ) + R D ( 0 , 1 , k 2 ) ) complete-elliptic-integral-second-kind-E 𝑘 1 3 superscript superscript 𝑘 2 Carlson-integral-RD 0 superscript superscript 𝑘 2 1 Carlson-integral-RD 0 1 superscript superscript 𝑘 2 {\displaystyle{\displaystyle E\left(k\right)=\tfrac{1}{3}{k^{\prime}}^{2}\left% (R_{D}\left(0,{k^{\prime}}^{2},1\right)+R_{D}\left(0,1,{k^{\prime}}^{2}\right)% \right)}}
\compellintEk@{k} = \tfrac{1}{3}{k^{\prime}}^{2}\left(\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1}+\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}}\right)

Error
EllipticE[(k)^2] == Divide[1,3]*1 - (k)^(2)*(3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2)))
Missing Macro Error Failure -
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[7.885081986624734, -2.293856789051463]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25#Ex4 K ( k ) - E ( k ) = k 2 D ( k ) complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 complete-elliptic-integral-D 𝑘 {\displaystyle{\displaystyle K\left(k\right)-E\left(k\right)=k^{2}D\left(k% \right)}}
\compellintKk@{k}-\compellintEk@{k} = k^{2}\compellintDk@{k}

EllipticK(k)- EllipticE(k) = (k)^(2)* (EllipticK(k) - EllipticE(k))/(k)^2
EllipticK[(k)^2]- EllipticE[(k)^2] == (k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4]
Successful Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[0.3274322182097533, -1.81658404135269]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25#Ex4 k 2 D ( k ) = 1 3 k 2 R D ( 0 , k 2 , 1 ) superscript 𝑘 2 complete-elliptic-integral-D 𝑘 1 3 superscript 𝑘 2 Carlson-integral-RD 0 superscript superscript 𝑘 2 1 {\displaystyle{\displaystyle k^{2}D\left(k\right)=\tfrac{1}{3}k^{2}R_{D}\left(% 0,{k^{\prime}}^{2},1\right)}}
k^{2}\compellintDk@{k} = \tfrac{1}{3}k^{2}\CarlsonsymellintRD@{0}{{k^{\prime}}^{2}}{1}

Error
(k)^(2)* Divide[EllipticK[(k)^2] - EllipticE[(k)^2], (k)^4] == Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/((1-1 - (k)^(2))*(1-0)^(1/2))
Missing Macro Error Failure -
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[-1.5165865988698335, -0.6055280137842299]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25#Ex5 E ( k ) - k 2 K ( k ) = 1 3 k 2 k 2 R D ( 0 , 1 , k 2 ) complete-elliptic-integral-second-kind-E 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 1 3 superscript 𝑘 2 superscript superscript 𝑘 2 Carlson-integral-RD 0 1 superscript superscript 𝑘 2 {\displaystyle{\displaystyle E\left(k\right)-{k^{\prime}}^{2}K\left(k\right)=% \tfrac{1}{3}k^{2}{k^{\prime}}^{2}R_{D}\left(0,1,{k^{\prime}}^{2}\right)}}
\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k} = \tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{0}{1}{{k^{\prime}}^{2}}

Error
EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2] == Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)]-EllipticE[ArcCos[Sqrt[0/1 - (k)^(2)]],(1 - (k)^(2)-1)/(1 - (k)^(2)-0)])/((1 - (k)^(2)-1)*(1 - (k)^(2)-0)^(1/2))
Missing Macro Error Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.3636107378197124, 2.0191745059478237]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.25.E2 Π ( α 2 , k ) - K ( k ) = 1 3 α 2 R J ( 0 , k 2 , 1 , 1 - α 2 ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 complete-elliptic-integral-first-kind-K 𝑘 1 3 superscript 𝛼 2 Carlson-integral-RJ 0 superscript superscript 𝑘 2 1 1 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)-K\left(k\right)=% \tfrac{1}{3}\alpha^{2}R_{J}\left(0,{k^{\prime}}^{2},1,1-\alpha^{2}\right)}}
\compellintPik@{\alpha^{2}}{k}-\compellintKk@{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{0}{{k^{\prime}}^{2}}{1}{1-\alpha^{2}}

Error
EllipticPi[\[Alpha]^(2), (k)^2]- EllipticK[(k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(1-0)/(1-1 - \[Alpha]^(2))*(EllipticPi[(1-1 - \[Alpha]^(2))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0]
Missing Macro Error Failure -
Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}

Result: Complex[-1.5241433161083033, 0.5547659663605348]
Test Values: {Rule[k, 2], Rule[α, 1.5]}

... skip entries to safe data
19.25.E4 Π ( α 2 , k ) = - 1 3 ( k 2 / α 2 ) R J ( 0 , 1 - k 2 , 1 , 1 - ( k 2 / α 2 ) ) complete-elliptic-integral-third-kind-Pi superscript 𝛼 2 𝑘 1 3 superscript 𝑘 2 superscript 𝛼 2 Carlson-integral-RJ 0 1 superscript 𝑘 2 1 1 superscript 𝑘 2 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\alpha^{2},k\right)=-\tfrac{1}{3}(k^{2}/% \alpha^{2})R_{J}\left(0,1-k^{2},1,1-(k^{2}/\alpha^{2})\right)}}
\compellintPik@{\alpha^{2}}{k} = -\tfrac{1}{3}(k^{2}/\alpha^{2})\CarlsonsymellintRJ@{0}{1-k^{2}}{1}{1-(k^{2}/\alpha^{2})}
- < k 2 , k 2 < 1 , 1 < α 2 formulae-sequence superscript 𝑘 2 formulae-sequence superscript 𝑘 2 1 1 superscript 𝛼 2 {\displaystyle{\displaystyle-\infty<k^{2},k^{2}<1,1<\alpha^{2}}}
Error
EllipticPi[\[Alpha]^(2), (k)^2] == -Divide[1,3]*((k)^(2)/\[Alpha]^(2))*3*(1-0)/(1-1 -((k)^(2)/\[Alpha]^(2)))*(EllipticPi[(1-1 -((k)^(2)/\[Alpha]^(2)))/(1-0),ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)]-EllipticF[ArcCos[Sqrt[0/1]],(1-1 - (k)^(2))/(1-0)])/Sqrt[1-0]
Missing Macro Error Failure - Skip - No test values generated
19.25.E5 F ( ϕ , k ) = R F ( c - 1 , c - k 2 , c ) elliptic-integral-first-kind-F italic-ϕ 𝑘 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle F\left(\phi,k\right)=R_{F}\left(c-1,c-k^{2},c% \right)}}
\incellintFk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c}

EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity)
EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]
Failure Failure
Failed [180 / 180]
Result: Float(undefined)+Float(undefined)*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 3.854689052+3.461698034*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[2.0026000841930385, 1.2187088711714384]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.4748265293714395, 0.7583435972865697]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E6 F ( ϕ , k ) k = 1 3 k R D ( c - 1 , c , c - k 2 ) partial-derivative elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 1 3 𝑘 Carlson-integral-RD 𝑐 1 𝑐 𝑐 superscript 𝑘 2 {\displaystyle{\displaystyle\frac{\partial F\left(\phi,k\right)}{\partial k}=% \tfrac{1}{3}kR_{D}\left(c-1,c,c-k^{2}\right)}}
\pderiv{\incellintFk@{\phi}{k}}{k} = \tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c}{c-k^{2}}

Error
D[EllipticF[\[Phi], (k)^2], k] == Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2))
Missing Macro Error Failure -
Failed [180 / 180]
Result: Indeterminate
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.4045300788217367, 0.4404710702025501]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E7 E ( ϕ , k ) = 2 R G ( c - 1 , c - k 2 , c ) - ( c - 1 ) R F ( c - 1 , c - k 2 , c ) - ( c - 1 ) ( c - k 2 ) / c elliptic-integral-second-kind-E italic-ϕ 𝑘 2 Carlson-integral-RG 𝑐 1 𝑐 superscript 𝑘 2 𝑐 𝑐 1 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle E\left(\phi,k\right)=2R_{G}\left(c-1,c-k^{2},c% \right)-(c-1)R_{F}\left(c-1,c-k^{2},c\right)-\sqrt{(c-1)(c-k^{2})/c}}}
\incellintEk@{\phi}{k} = 2\CarlsonsymellintRG@{c-1}{c-k^{2}}{c}-(c-1)\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\sqrt{(c-1)(c-k^{2})/c}

Error
EllipticE[\[Phi], (k)^2] == 2*Sqrt[c-c - 1]*(EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+(Cot[ArcCos[Sqrt[c - 1/c]]])^2*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]+Cot[ArcCos[Sqrt[c - 1/c]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[c - 1/c]]]^2])-(c - 1)*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Sqrt[(c - 1)*(c - (k)^(2))/c]
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[5.787775994567906, 4.022803158659452]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[6.805668366738806, 3.968311704298834]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E9 E ( ϕ , k ) = R F ( c - 1 , c - k 2 , c ) - 1 3 k 2 R D ( c - 1 , c - k 2 , c ) elliptic-integral-second-kind-E italic-ϕ 𝑘 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 1 3 superscript 𝑘 2 Carlson-integral-RD 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle E\left(\phi,k\right)=R_{F}\left(c-1,c-k^{2},c% \right)-\tfrac{1}{3}k^{2}R_{D}\left(c-1,c-k^{2},c\right)}}
\incellintEk@{\phi}{k} = \CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}

Error
EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2))
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[3.5743811704478246, 0.7698502565730785]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[3.9424508382496875, -1.017653751864599]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E10 E ( ϕ , k ) = k 2 R F ( c - 1 , c - k 2 , c ) + 1 3 k 2 k 2 R D ( c - 1 , c , c - k 2 ) + k 2 ( c - 1 ) / ( c ( c - k 2 ) ) elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript superscript 𝑘 2 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 1 3 superscript 𝑘 2 superscript superscript 𝑘 2 Carlson-integral-RD 𝑐 1 𝑐 𝑐 superscript 𝑘 2 superscript 𝑘 2 𝑐 1 𝑐 𝑐 superscript 𝑘 2 {\displaystyle{\displaystyle E\left(\phi,k\right)={k^{\prime}}^{2}R_{F}\left(c% -1,c-k^{2},c\right)+\tfrac{1}{3}k^{2}{k^{\prime}}^{2}R_{D}\left(c-1,c,c-k^{2}% \right)+k^{2}\sqrt{(c-1)/(c(c-k^{2}))}}}
\incellintEk@{\phi}{k} = {k^{\prime}}^{2}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}+\tfrac{1}{3}k^{2}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-1}{c}{c-k^{2}}+k^{2}\sqrt{(c-1)/(c(c-k^{2}))}
c > k 2 𝑐 superscript 𝑘 2 {\displaystyle{\displaystyle c>k^{2}}}
Error
EllipticE[\[Phi], (k)^2] == 1 - (k)^(2)*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]+Divide[1,3]*(k)^(2)*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c - (k)^(2)]],(c - (k)^(2)-c)/(c - (k)^(2)-c - 1)])/((c - (k)^(2)-c)*(c - (k)^(2)-c - 1)^(1/2))+ (k)^(2)*Sqrt[(c - 1)/(c*(c - (k)^(2)))]
Missing Macro Error Failure -
Failed [20 / 20]
Result: Complex[-1.0687219916023158, 0.8637282710955538]
Test Values: {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.7724732696890155, 1.0672164584507502]
Test Values: {Rule[c, 1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.25.E11 E ( ϕ , k ) = - 1 3 k 2 R D ( c - k 2 , c , c - 1 ) + ( c - k 2 ) / ( c ( c - 1 ) ) elliptic-integral-second-kind-E italic-ϕ 𝑘 1 3 superscript superscript 𝑘 2 Carlson-integral-RD 𝑐 superscript 𝑘 2 𝑐 𝑐 1 𝑐 superscript 𝑘 2 𝑐 𝑐 1 {\displaystyle{\displaystyle E\left(\phi,k\right)=-\tfrac{1}{3}{k^{\prime}}^{2% }R_{D}\left(c-k^{2},c,c-1\right)+\sqrt{(c-k^{2})/(c(c-1))}}}
\incellintEk@{\phi}{k} = -\tfrac{1}{3}{k^{\prime}}^{2}\CarlsonsymellintRD@{c-k^{2}}{c}{c-1}+\sqrt{(c-k^{2})/(c(c-1))}
ϕ 1 2 π italic-ϕ 1 2 𝜋 {\displaystyle{\displaystyle\phi\neq\tfrac{1}{2}\pi}}
Error
EllipticE[\[Phi], (k)^2] == -Divide[1,3]*1 - (k)^(2)*3*(EllipticF[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))]-EllipticE[ArcCos[Sqrt[c - (k)^(2)/c - 1]],(c - 1-c)/(c - 1-c - (k)^(2))])/((c - 1-c)*(c - 1-c - (k)^(2))^(1/2))+Sqrt[(c - (k)^(2))/(c*(c - 1))]
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[3.6312701919621486, -1.3602272606820804]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.7754142926962797, -0.6029933704091625]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E12 E ( ϕ , k ) k = - 1 3 k R D ( c - 1 , c - k 2 , c ) partial-derivative elliptic-integral-second-kind-E italic-ϕ 𝑘 𝑘 1 3 𝑘 Carlson-integral-RD 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle\frac{\partial E\left(\phi,k\right)}{\partial k}=-% \tfrac{1}{3}kR_{D}\left(c-1,c-k^{2},c\right)}}
\pderiv{\incellintEk@{\phi}{k}}{k} = -\tfrac{1}{3}k\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}

Error
D[EllipticE[\[Phi], (k)^2], k] == -Divide[1,3]*k*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2))
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[1.571781086254786, -0.44885861459835996]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.233812154439124, -0.8879986745755843]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E13 D ( ϕ , k ) = 1 3 R D ( c - 1 , c - k 2 , c ) elliptic-integral-third-kind-D italic-ϕ 𝑘 1 3 Carlson-integral-RD 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle D\left(\phi,k\right)=\tfrac{1}{3}R_{D}\left(c-1,c% -k^{2},c\right)}}
\incellintDk@{\phi}{k} = \tfrac{1}{3}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}

Error
Divide[EllipticF[\[Phi], (k)^2] - EllipticE[\[Phi], (k)^2], (k)^4] == Divide[1,3]*3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2))
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[-1.571781086254786, 0.44885861459835996]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6083725296430629, 0.41279951787826946]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E14 Π ( ϕ , α 2 , k ) - F ( ϕ , k ) = 1 3 α 2 R J ( c - 1 , c - k 2 , c , c - α 2 ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 1 3 superscript 𝛼 2 Carlson-integral-RJ 𝑐 1 𝑐 superscript 𝑘 2 𝑐 𝑐 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},k\right)-F\left(\phi,k% \right)=\tfrac{1}{3}\alpha^{2}R_{J}\left(c-1,c-k^{2},c,c-\alpha^{2}\right)}}
\incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k} = \tfrac{1}{3}\alpha^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\alpha^{2}}

Error
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2] == Divide[1,3]*\[Alpha]^(2)* 3*(c-c - 1)/(c-c - \[Alpha]^(2))*(EllipticPi[(c-c - \[Alpha]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-0.9803588804354156, -0.9579910370435353]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6164275583611891, -0.384238714210872]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E16 Π ( ϕ , α 2 , k ) = - 1 3 ω 2 R J ( c - 1 , c - k 2 , c , c - ω 2 ) + ( c - 1 ) ( c - k 2 ) ( α 2 - 1 ) ( 1 - ω 2 ) R C ( c ( α 2 - 1 ) ( 1 - ω 2 ) , ( α 2 - c ) ( c - ω 2 ) ) elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 1 3 superscript 𝜔 2 Carlson-integral-RJ 𝑐 1 𝑐 superscript 𝑘 2 𝑐 𝑐 superscript 𝜔 2 𝑐 1 𝑐 superscript 𝑘 2 superscript 𝛼 2 1 1 superscript 𝜔 2 Carlson-integral-RC 𝑐 superscript 𝛼 2 1 1 superscript 𝜔 2 superscript 𝛼 2 𝑐 𝑐 superscript 𝜔 2 {\displaystyle{\displaystyle\Pi\left(\phi,\alpha^{2},k\right)=-\tfrac{1}{3}% \omega^{2}R_{J}\left(c-1,c-k^{2},c,c-\omega^{2}\right)+\sqrt{\frac{(c-1)(c-k^{% 2})}{(\alpha^{2}-1)(1-\omega^{2})}}\*R_{C}\left(c(\alpha^{2}-1)(1-\omega^{2}),% (\alpha^{2}-c)(c-\omega^{2})\right)}}
\incellintPik@{\phi}{\alpha^{2}}{k} = -\tfrac{1}{3}\omega^{2}\CarlsonsymellintRJ@{c-1}{c-k^{2}}{c}{c-\omega^{2}}+\sqrt{\frac{(c-1)(c-k^{2})}{(\alpha^{2}-1)(1-\omega^{2})}}\*\CarlsonellintRC@{c(\alpha^{2}-1)(1-\omega^{2})}{(\alpha^{2}-c)(c-\omega^{2})}
ω 2 = k 2 / α 2 superscript 𝜔 2 superscript 𝑘 2 superscript 𝛼 2 {\displaystyle{\displaystyle\omega^{2}=k^{2}/\alpha^{2}}}
Error
EllipticPi[\[Alpha]^(2), \[Phi],(k)^2] == -Divide[1,3]*\[Omega]^(2)* 3*(c-c - 1)/(c-c - \[Omega]^(2))*(EllipticPi[(c-c - \[Omega]^(2))/(c-c - 1),ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/Sqrt[c-c - 1]+Sqrt[Divide[(c - 1)*(c - (k)^(2)),(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2))]]* 1/Sqrt[(\[Alpha]^(2)- c)*(c - \[Omega]^(2))]*Hypergeometric2F1[1/2,1/2,3/2,1-(c*(\[Alpha]^(2)- 1)*(1 - \[Omega]^(2)))/((\[Alpha]^(2)- c)*(c - \[Omega]^(2)))]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-0.11631142199526823, 0.9703799109463437]
Test Values: {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, -2]}

Result: Complex[-0.11631142199526823, 0.9703799109463437]
Test Values: {Rule[c, -1.5], Rule[k, 3], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ω, 2]}

... skip entries to safe data
19.25.E17 F ( ϕ , k ) = R F ( x , y , z ) elliptic-integral-first-kind-F italic-ϕ 𝑘 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle F\left(\phi,k\right)=R_{F}\left(x,y,z\right)}}
\incellintFk@{\phi}{k} = \CarlsonsymellintRF@{x}{y}{z}

EllipticF(sin(phi), k) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
EllipticF[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Aborted Failure
Failed [300 / 300]
Result: 2.547570015-.6488873983*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}

Result: 2.209888328-.6080126261*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.5939484671297026, -0.40701440305540804]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.5587134153531784, -0.34669285510288844]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E18 ( x , y , z ) = ( c - 1 , c - k 2 , c ) 𝑥 𝑦 𝑧 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle(x,y,z)=(c-1,c-k^{2},c)}}
(x,y,z) = (c-1,c-k^{2},c)

(x , y ,(x + y*I)) = (c - 1 , c - (k)^(2), c)
(x , y ,(x + y*I)) == (c - 1 , c - (k)^(2), c)
Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex6 ϕ = arccos x / z italic-ϕ 𝑥 𝑧 {\displaystyle{\displaystyle\phi=\operatorname{arccos}\sqrt{\ifrac{x}{z}}}}
\phi = \acos@@{\sqrt{\ifrac{x}{z}}}

phi = arccos(sqrt((x)/(x + y*I)))
\[Phi] == ArcCos[Sqrt[Divide[x,x + y*I]]]
Failure Failure
Failed [180 / 180]
Result: .806272406e-1+.9406867936*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2}

Result: .806272406e-1+.593132064e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = 3/2}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[-0.35238546150522904, 0.6906867935097715]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.0353981633974483, 0.8736994954019909]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.25#Ex6 arccos x / z = arcsin ( z - x ) / z 𝑥 𝑧 𝑧 𝑥 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}\sqrt{\ifrac{x}{z}}=% \operatorname{arcsin}\sqrt{\ifrac{(z-x)}{z}}}}
\acos@@{\sqrt{\ifrac{x}{z}}} = \asin@@{\sqrt{\ifrac{(z-x)}{z}}}

arccos(sqrt((x)/(x + y*I))) = arcsin(sqrt(((x + y*I)- x)/(x + y*I)))
ArcCos[Sqrt[Divide[x,x + y*I]]] == ArcSin[Sqrt[Divide[(x + y*I)- x,x + y*I]]]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
19.25#Ex7 k = z - y z - x 𝑘 𝑧 𝑦 𝑧 𝑥 {\displaystyle{\displaystyle k=\sqrt{\frac{z-y}{z-x}}}}
k = \sqrt{\frac{z-y}{z-x}}

k = sqrt(((x + y*I)- y)/((x + y*I)- x))
k == Sqrt[Divide[(x + y*I)- y,(x + y*I)- x]]
Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex8 α 2 = z - p z - x superscript 𝛼 2 𝑧 𝑝 𝑧 𝑥 {\displaystyle{\displaystyle\alpha^{2}=\frac{z-p}{z-x}}}
\alpha^{2} = \frac{z-p}{z-x}

(alpha)^(2) = ((x + y*I)- p)/((x + y*I)- x)
\[Alpha]^(2) == Divide[(x + y*I)- p,(x + y*I)- x]
Skipped - no semantic math Skipped - no semantic math - -
19.25.E24 ( z - x ) 1 / 2 R F ( x , y , z ) = F ( ϕ , k ) superscript 𝑧 𝑥 1 2 Carlson-integral-RF 𝑥 𝑦 𝑧 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle(z-x)^{1/2}R_{F}\left(x,y,z\right)=F\left(\phi,k% \right)}}
(z-x)^{1/2}\CarlsonsymellintRF@{x}{y}{z} = \incellintFk@{\phi}{k}

((x + y*I)- x)^(1/2)* 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = EllipticF(sin(phi), k)
((x + y*I)- x)^(1/2)* EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == EllipticF[\[Phi], (k)^2]
Aborted Failure
Failed [300 / 300]
Result: -1.167656510+1.966567574*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 1}

Result: -.8299748231+1.925692802*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, x = 3/2, y = -3/2, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.015324342917649614, 0.4565416109140732]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.050559394694173865, 0.3962200629615536]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E25 ( z - x ) 3 / 2 R D ( x , y , z ) = ( 3 / k 2 ) ( F ( ϕ , k ) - E ( ϕ , k ) ) superscript 𝑧 𝑥 3 2 Carlson-integral-RD 𝑥 𝑦 𝑧 3 superscript 𝑘 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 elliptic-integral-second-kind-E italic-ϕ 𝑘 {\displaystyle{\displaystyle(z-x)^{3/2}R_{D}\left(x,y,z\right)=(3/k^{2})(F% \left(\phi,k\right)-E\left(\phi,k\right))}}
(z-x)^{3/2}\CarlsonsymellintRD@{x}{y}{z} = (3/k^{2})(\incellintFk@{\phi}{k}-\incellintEk@{\phi}{k})

Error
((x + y*I)- x)^(3/2)* 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == (3/(k)^(2))*(EllipticF[\[Phi], (k)^2]- EllipticE[\[Phi], (k)^2])
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-0.9041684186949032, 0.18989946051507803]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.8729885067685752, 0.19149534336253457]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E26 ( z - x ) 3 / 2 R J ( x , y , z , p ) = ( 3 / α 2 ) ( Π ( ϕ , α 2 , k ) - F ( ϕ , k ) ) superscript 𝑧 𝑥 3 2 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 superscript 𝛼 2 elliptic-integral-third-kind-Pi italic-ϕ superscript 𝛼 2 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle(z-x)^{3/2}R_{J}\left(x,y,z,p\right)=(3/\alpha^{2}% ){(\Pi\left(\phi,\alpha^{2},k\right)-F\left(\phi,k\right))}}}
(z-x)^{3/2}\CarlsonsymellintRJ@{x}{y}{z}{p} = (3/\alpha^{2}){(\incellintPik@{\phi}{\alpha^{2}}{k}-\incellintFk@{\phi}{k})}

Error
((x + y*I)- x)^(3/2)* 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == (3/\[Alpha]^(2))*(EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]- EllipticF[\[Phi], (k)^2])
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-8.905365206673954*^-4, 0.6653826564189609]
Test Values: {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.030816807002235325, 0.6810951786851601]
Test Values: {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25.E27 2 ( z - x ) - 1 / 2 R G ( x , y , z ) = E ( ϕ , k ) + ( cot ϕ ) 2 F ( ϕ , k ) + ( cot ϕ ) 1 - k 2 sin 2 ϕ 2 superscript 𝑧 𝑥 1 2 Carlson-integral-RG 𝑥 𝑦 𝑧 elliptic-integral-second-kind-E italic-ϕ 𝑘 superscript italic-ϕ 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 italic-ϕ 1 superscript 𝑘 2 2 italic-ϕ {\displaystyle{\displaystyle 2(z-x)^{-1/2}R_{G}\left(x,y,z\right)=E\left(\phi,% k\right)+(\cot\phi)^{2}F\left(\phi,k\right)+(\cot\phi)\sqrt{1-k^{2}{\sin^{2}}% \phi}}}
2(z-x)^{-1/2}\CarlsonsymellintRG@{x}{y}{z} = \incellintEk@{\phi}{k}+(\cot@@{\phi})^{2}\incellintFk@{\phi}{k}+(\cot@@{\phi})\sqrt{1-k^{2}\sin^{2}@@{\phi}}

Error
2*((x + y*I)- x)^(- 1/2)* Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == EllipticE[\[Phi], (k)^2]+(Cot[\[Phi]])^(2)* EllipticF[\[Phi], (k)^2]+(Cot[\[Phi]])*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-1.8997799949200251, -0.4031557744461449]
Test Values: {Rule[k, 1], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-3.0701379688219372, -2.1411109504853227]
Test Values: {Rule[k, 2], Rule[x, 1.5], Rule[y, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.25#Ex9 Δ ( n , d ) = k 2 Δ n d superscript 𝑘 2 {\displaystyle{\displaystyle\Delta(\mathrm{n,d})=k^{2}}}
\Delta(\mathrm{n,d}) = k^{2}

Delta(n , d) = (k)^(2)
\[CapitalDelta][n , d] == (k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex10 Δ ( d , c ) = k 2 Δ d c superscript superscript 𝑘 2 {\displaystyle{\displaystyle\Delta(\mathrm{d,c})={k^{\prime}}^{2}}}
\Delta(\mathrm{d,c}) = {k^{\prime}}^{2}

Delta(d , c) = 1 - (k)^(2)
\[CapitalDelta][d , c] == 1 - (k)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.25#Ex11 Δ ( n , c ) = 1 Δ n c 1 {\displaystyle{\displaystyle\Delta(\mathrm{n,c})=1}}
\Delta(\mathrm{n,c}) = 1

Delta(n , c) = 1
\[CapitalDelta][n , c] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.25.E30 am ( u , k ) = R C ( cs 2 ( u , k ) , ns 2 ( u , k ) ) Jacobi-elliptic-amplitude 𝑢 𝑘 Carlson-integral-RC Jacobi-elliptic-cs 2 𝑢 𝑘 Jacobi-elliptic-ns 2 𝑢 𝑘 {\displaystyle{\displaystyle\operatorname{am}\left(u,k\right)=R_{C}\left({% \operatorname{cs}^{2}}\left(u,k\right),{\operatorname{ns}^{2}}\left(u,k\right)% \right)}}
\Jacobiamk@{u}{k} = \CarlsonellintRC@{\Jacobiellcsk^{2}@{u}{k}}{\Jacobiellnsk^{2}@{u}{k}}

Error
JacobiAmplitude[u, Power[k, 2]] == 1/Sqrt[(JacobiNS[u, (k)^2])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((JacobiCS[u, (k)^2])^(2))/((JacobiNS[u, (k)^2])^(2))]
Missing Macro Error Aborted -
Failed [18 / 30]
Result: Complex[-0.5428587296705786, 0.8636075147962846]
Test Values: {Rule[k, 1], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

Result: Complex[-0.6732377468613371, 0.8494366739388763]
Test Values: {Rule[k, 2], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.25.E31 u = R F ( p s 2 ( u , k ) , q s 2 ( u , k ) , r s 2 ( u , k ) ) 𝑢 Carlson-integral-RF abstract-Jacobi-elliptic p s 2 𝑢 𝑘 abstract-Jacobi-elliptic q s 2 𝑢 𝑘 abstract-Jacobi-elliptic r s 2 𝑢 𝑘 {\displaystyle{\displaystyle u=R_{F}\left({\operatorname{ps}^{2}}\left(u,k% \right),{\operatorname{qs}^{2}}\left(u,k\right),{\operatorname{rs}^{2}}\left(u% ,k\right)\right)}}
u = \CarlsonsymellintRF@{\genJacobiellk{p}{s}^{2}@{u}{k}}{\genJacobiellk{q}{s}^{2}@{u}{k}}{\genJacobiellk{r}{s}^{2}@{u}{k}}

u = 0.5*int(1/(sqrt(t+genJacobiellk(p)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(q)*(s)^(2)* u*k)*sqrt(t+genJacobiellk(r)*(s)^(2)* u*k)), t = 0..infinity)
u == EllipticF[ArcCos[Sqrt[genJacobiellk[p]*(s)^(2)* u*k/genJacobiellk[r]*(s)^(2)* u*k]],(genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[q]*(s)^(2)* u*k)/(genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[p]*(s)^(2)* u*k)]/Sqrt[genJacobiellk[r]*(s)^(2)* u*k-genJacobiellk[p]*(s)^(2)* u*k]
Aborted Failure Error
Failed [300 / 300]
Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.78471422644353, -0.9906313764027224], Power[Times[Complex[-1.7426678688862403, -1.3308892896287465], genJacobiellk], Rational[-1, 2]]]]
Test Values: {Rule[k, 1], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[0.43301270189221935, 0.24999999999999997], Times[Complex[-0.3766936106342851, -1.225388931598258], Power[Times[Complex[-3.4853357377724805, -2.661778579257493], genJacobiellk], Rational[-1, 2]]]]
Test Values: {Rule[k, 2], Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[s, -1.5], Rule[u, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.26.E1 R F ( x + λ , y + λ , z + λ ) + R F ( x + μ , y + μ , z + μ ) = R F ( x , y , z ) Carlson-integral-RF 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 Carlson-integral-RF 𝑥 𝜇 𝑦 𝜇 𝑧 𝜇 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(x+\lambda,y+\lambda,z+\lambda\right)+R% _{F}\left(x+\mu,y+\mu,z+\mu\right)=R_{F}\left(x,y,z\right)}}
\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRF@{x}{y}{z}

0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)+ 0.5*int(1/(sqrt(t+x + mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity) = 0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[0.6992255245511445, -1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.2162365888422955, -0.7585970772170993]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E2 x + μ = λ - 2 ( ( x + λ ) y z + x ( y + λ ) ( z + λ ) ) 2 𝑥 𝜇 superscript 𝜆 2 superscript 𝑥 𝜆 𝑦 𝑧 𝑥 𝑦 𝜆 𝑧 𝜆 2 {\displaystyle{\displaystyle x+\mu=\lambda^{-2}\left(\sqrt{(x+\lambda)yz}+% \sqrt{x(y+\lambda)(z+\lambda)}\right)^{2}}}
x+\mu = \lambda^{-2}\left(\sqrt{(x+\lambda)yz}+\sqrt{x(y+\lambda)(z+\lambda)}\right)^{2}

x + mu = (lambda)^(- 2)*(sqrt((x + lambda)*y*(x + y*I))+sqrt(x*(y + lambda)*((x + y*I)+ lambda)))^(2)
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[(x + \[Lambda])*y*(x + y*I)]+Sqrt[x*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex1 ( ξ , η , ζ ) = ( x + λ , y + λ , z + λ ) 𝜉 𝜂 𝜁 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 {\displaystyle{\displaystyle(\xi,\eta,\zeta)=(x+\lambda,y+\lambda,z+\lambda)}}
(\xi,\eta,\zeta) = (x+\lambda,y+\lambda,z+\lambda)

(xi , eta , zeta) = (x + lambda , y + lambda ,(x + y*I)+ lambda)
(\[Xi], \[Eta], \[Zeta]) == (x + \[Lambda], y + \[Lambda],(x + y*I)+ \[Lambda])
Skipped - no semantic math Skipped - no semantic math - -
19.26.E5 μ = λ - 2 ( x y z + ( x + λ ) ( y + λ ) ( z + λ ) ) 2 - λ - x - y - z 𝜇 superscript 𝜆 2 superscript 𝑥 𝑦 𝑧 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 2 𝜆 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\mu=\lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)% (y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z}}
\mu = \lambda^{-2}\left(\sqrt{xyz}+\sqrt{(x+\lambda)(y+\lambda)(z+\lambda)}\right)^{2}-\lambda-x-y-z

mu = (lambda)^(- 2)*(sqrt(x*y*(x + y*I))+sqrt((x + lambda)*(y + lambda)*((x + y*I)+ lambda)))^(2)- lambda - x - y -(x + y*I)
\[Mu] == \[Lambda]^(- 2)*(Sqrt[x*y*(x + y*I)]+Sqrt[(x + \[Lambda])*(y + \[Lambda])*((x + y*I)+ \[Lambda])])^(2)- \[Lambda]- x - y -(x + y*I)
Skipped - no semantic math Skipped - no semantic math - -
19.26.E6 ( λ μ - x y - x z - y z ) 2 = 4 x y z ( λ + μ + x + y + z ) superscript 𝜆 𝜇 𝑥 𝑦 𝑥 𝑧 𝑦 𝑧 2 4 𝑥 𝑦 𝑧 𝜆 𝜇 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle(\lambda\mu-xy-xz-yz)^{2}=4xyz(\lambda+\mu+x+y+z)}}
(\lambda\mu-xy-xz-yz)^{2} = 4xyz(\lambda+\mu+x+y+z)

(lambda*mu - x*y - x*(x + y*I)- y*(x + y*I))^(2) = 4*x*y*(x + y*I)*(lambda + mu + x + y +(x + y*I))
(\[Lambda]*\[Mu]- x*y - x*(x + y*I)- y*(x + y*I))^(2) == 4*x*y*(x + y*I)*(\[Lambda]+ \[Mu]+ x + y +(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.26.E7 R D ( x + λ , y + λ , z + λ ) + R D ( x + μ , y + μ , z + μ ) = R D ( x , y , z ) - 3 z ( z + λ ) ( z + μ ) Carlson-integral-RD 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 Carlson-integral-RD 𝑥 𝜇 𝑦 𝜇 𝑧 𝜇 Carlson-integral-RD 𝑥 𝑦 𝑧 3 𝑧 𝑧 𝜆 𝑧 𝜇 {\displaystyle{\displaystyle R_{D}\left(x+\lambda,y+\lambda,z+\lambda\right)+R% _{D}\left(x+\mu,y+\mu,z+\mu\right)=R_{D}\left(x,y,z\right)-\frac{3}{\sqrt{z(z+% \lambda)(z+\mu)}}}}
\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\CarlsonsymellintRD@{x+\mu}{y+\mu}{z+\mu} = \CarlsonsymellintRD@{x}{y}{z}-\frac{3}{\sqrt{z(z+\lambda)(z+\mu)}}

Error
3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/(((x + y*I)+ \[Mu]-y + \[Mu])*((x + y*I)+ \[Mu]-x + \[Mu])^(1/2)) == 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))-Divide[3,Sqrt[(x + y*I)*((x + y*I)+ \[Lambda])*((x + y*I)+ \[Mu])]]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Complex[-0.4984590390126629, 1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.01924185171185039, 1.9974068077017313]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E8 2 R G ( x + λ , y + λ , z + λ ) + 2 R G ( x + μ , y + μ , z + μ ) = 2 R G ( x , y , z ) + λ R F ( x + λ , y + λ , z + λ ) + μ R F ( x + μ , y + μ , z + μ ) + λ + μ + x + y + z 2 Carlson-integral-RG 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 2 Carlson-integral-RG 𝑥 𝜇 𝑦 𝜇 𝑧 𝜇 2 Carlson-integral-RG 𝑥 𝑦 𝑧 𝜆 Carlson-integral-RF 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 𝜇 Carlson-integral-RF 𝑥 𝜇 𝑦 𝜇 𝑧 𝜇 𝜆 𝜇 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle 2R_{G}\left(x+\lambda,y+\lambda,z+\lambda\right)+% 2R_{G}\left(x+\mu,y+\mu,z+\mu\right)=2R_{G}\left(x,y,z\right)+\lambda R_{F}% \left(x+\lambda,y+\lambda,z+\lambda\right)+\mu R_{F}\left(x+\mu,y+\mu,z+\mu% \right)+\sqrt{\lambda+\mu+x+y+z}}}
2\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}+2\CarlsonsymellintRG@{x+\mu}{y+\mu}{z+\mu} = 2\CarlsonsymellintRG@{x}{y}{z}+\lambda\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}+\mu\CarlsonsymellintRF@{x+\mu}{y+\mu}{z+\mu}+\sqrt{\lambda+\mu+x+y+z}

Error
2*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])+ 2*Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]*(EllipticE[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+(Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]+Cot[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]]]^2]) == 2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2])+ \[Lambda]*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ \[Mu]*EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]]+Sqrt[\[Lambda]+ \[Mu]+ x + y +(x + y*I)]
Missing Macro Error Aborted -
Failed [300 / 300]
Result: Plus[Complex[-2.0898920996046204, 0.6803615706262403], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[4.184639587172815, -1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[-1.182728387586514, 0.2705509888970101], Times[Complex[-1.7320508075688772, 1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[0.7841147574434748, -1.6170454393246465], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[2.0923197935864075, -0.9558768244369737], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E9 R J ( x + λ , y + λ , z + λ , p + λ ) + R J ( x + μ , y + μ , z + μ , p + μ ) = R J ( x , y , z , p ) - 3 R C ( γ - δ , γ ) Carlson-integral-RJ 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 𝑝 𝜆 Carlson-integral-RJ 𝑥 𝜇 𝑦 𝜇 𝑧 𝜇 𝑝 𝜇 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 3 Carlson-integral-RC 𝛾 𝛿 𝛾 {\displaystyle{\displaystyle R_{J}\left(x+\lambda,y+\lambda,z+\lambda,p+% \lambda\right)+R_{J}\left(x+\mu,y+\mu,z+\mu,p+\mu\right)=R_{J}\left(x,y,z,p% \right)-3R_{C}\left(\gamma-\delta,\gamma\right)}}
\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+\CarlsonsymellintRJ@{x+\mu}{y+\mu}{z+\mu}{p+\mu} = \CarlsonsymellintRJ@{x}{y}{z}{p}-3\CarlsonellintRC@{\gamma-\delta}{\gamma}

Error
3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*((x + y*I)+ \[Mu]-x + \[Mu])/((x + y*I)+ \[Mu]-p + \[Mu])*(EllipticPi[((x + y*I)+ \[Mu]-p + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu]),ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])]-EllipticF[ArcCos[Sqrt[x + \[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-x + \[Mu])])/Sqrt[(x + y*I)+ \[Mu]-x + \[Mu]] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Gamma]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Gamma]- \[Delta])/(\[Gamma])]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[6.482970499990588, -0.8807575715831795]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[7.020988185402777, -1.8389880807014276]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[γ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[δ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26#Ex3 γ = p ( p + λ ) ( p + μ ) 𝛾 𝑝 𝑝 𝜆 𝑝 𝜇 {\displaystyle{\displaystyle\gamma=p(p+\lambda)(p+\mu)}}
\gamma = p(p+\lambda)(p+\mu)

gamma = p*(p + lambda)*(p + mu)
\[Gamma] == p*(p + \[Lambda])*(p + \[Mu])
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex4 δ = ( p - x ) ( p - y ) ( p - z ) 𝛿 𝑝 𝑥 𝑝 𝑦 𝑝 𝑧 {\displaystyle{\displaystyle\delta=(p-x)(p-y)(p-z)}}
\delta = (p-x)(p-y)(p-z)

delta = (p - x)*(p - y)*(p -(x + y*I))
\[Delta] == (p - x)*(p - y)*(p -(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.26.E11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) Carlson-integral-RC 𝑥 𝜆 𝑦 𝜆 Carlson-integral-RC 𝑥 𝜇 𝑦 𝜇 Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{C}\left(x+\lambda,y+\lambda\right)+R_{C}\left(% x+\mu,y+\mu\right)=R_{C}\left(x,y\right)}}
\CarlsonellintRC@{x+\lambda}{y+\lambda}+\CarlsonellintRC@{x+\mu}{y+\mu} = \CarlsonellintRC@{x}{y}

Error
1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]+ 1/Sqrt[y + \[Mu]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Mu])/(y + \[Mu])] == 1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[1.7722794006718585, -0.740880873447254]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.579678795390187, -0.7154745309495683]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[μ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26#Ex5 x + μ = λ - 2 ( x + λ y + x ( y + λ ) ) 2 𝑥 𝜇 superscript 𝜆 2 superscript 𝑥 𝜆 𝑦 𝑥 𝑦 𝜆 2 {\displaystyle{\displaystyle x+\mu=\lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+% \lambda))^{2}}}
x+\mu = \lambda^{-2}(\sqrt{x+\lambda}y+\sqrt{x}(y+\lambda))^{2}

x + mu = (lambda)^(- 2)*(sqrt(x + lambda)*y +sqrt(x)*(y + lambda))^(2)
x + \[Mu] == \[Lambda]^(- 2)*(Sqrt[x + \[Lambda]]*y +Sqrt[x]*(y + \[Lambda]))^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex6 y + μ = ( y ( y + λ ) / λ 2 ) ( x + x + λ ) 2 𝑦 𝜇 𝑦 𝑦 𝜆 superscript 𝜆 2 superscript 𝑥 𝑥 𝜆 2 {\displaystyle{\displaystyle y+\mu=(y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x% +\lambda})^{2}}}
y+\mu = (y(y+\lambda)/\lambda^{2})(\sqrt{x}+\sqrt{x+\lambda})^{2}

y + mu = (y*(y + lambda)/(lambda)^(2))*(sqrt(x)+sqrt(x + lambda))^(2)
y + \[Mu] == (y*(y + \[Lambda])/\[Lambda]^(2))*(Sqrt[x]+Sqrt[x + \[Lambda]])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.26.E13 R C ( α 2 , α 2 - θ ) + R C ( β 2 , β 2 - θ ) = R C ( σ 2 , σ 2 - θ ) Carlson-integral-RC superscript 𝛼 2 superscript 𝛼 2 𝜃 Carlson-integral-RC superscript 𝛽 2 superscript 𝛽 2 𝜃 Carlson-integral-RC superscript 𝜎 2 superscript 𝜎 2 𝜃 {\displaystyle{\displaystyle R_{C}\left(\alpha^{2},\alpha^{2}-\theta\right)+R_% {C}\left(\beta^{2},\beta^{2}-\theta\right)=R_{C}\left(\sigma^{2},\sigma^{2}-% \theta\right)}}
\CarlsonellintRC@{\alpha^{2}}{\alpha^{2}-\theta}+\CarlsonellintRC@{\beta^{2}}{\beta^{2}-\theta} = \CarlsonellintRC@{\sigma^{2}}{\sigma^{2}-\theta}
σ = ( α β + θ ) / ( α + β ) 𝜎 𝛼 𝛽 𝜃 𝛼 𝛽 {\displaystyle{\displaystyle\sigma=(\alpha\beta+\theta)/(\alpha+\beta)}}
Error
1/Sqrt[\[Alpha]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Alpha]^(2)- \[Theta])]+ 1/Sqrt[\[Beta]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta]^(2))/(\[Beta]^(2)- \[Theta])] == 1/Sqrt[\[Sigma]^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Sigma]^(2))/(\[Sigma]^(2)- \[Theta])]
Missing Macro Error Aborted - Successful [Tested: 2]
19.26.E14 ( p - y ) R C ( x , p ) + ( q - y ) R C ( x , q ) = ( η - ξ ) R C ( ξ , η ) 𝑝 𝑦 Carlson-integral-RC 𝑥 𝑝 𝑞 𝑦 Carlson-integral-RC 𝑥 𝑞 𝜂 𝜉 Carlson-integral-RC 𝜉 𝜂 {\displaystyle{\displaystyle(p-y)R_{C}\left(x,p\right)+(q-y)R_{C}\left(x,q% \right)=(\eta-\xi)R_{C}\left(\xi,\eta\right)}}
(p-y)\CarlsonellintRC@{x}{p}+(q-y)\CarlsonellintRC@{x}{q} = (\eta-\xi)\CarlsonellintRC@{\xi}{\eta}
x 0 , y 0 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle x\geq 0,y\geq 0}}
Error
(p - y)*1/Sqrt[p]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(p)]+(q - y)*1/Sqrt[q]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(q)] == (\[Eta]- \[Xi])*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-3.0971074607887266, 1.6817857583573725]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26#Ex7 ( p - x ) ( q - x ) = ( y - x ) 2 𝑝 𝑥 𝑞 𝑥 superscript 𝑦 𝑥 2 {\displaystyle{\displaystyle(p-x)(q-x)=(y-x)^{2}}}
(p-x)(q-x) = (y-x)^{2}

(p - x)*(q - x) = (y - x)^(2)
(p - x)*(q - x) == (y - x)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex8 ξ = y 2 / x 𝜉 superscript 𝑦 2 𝑥 {\displaystyle{\displaystyle\xi=y^{2}/x}}
\xi = y^{2}/x

xi = (y)^(2)/x
\[Xi] == (y)^(2)/x
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex9 η = p q / x 𝜂 𝑝 𝑞 𝑥 {\displaystyle{\displaystyle\eta=pq/x}}
\eta = pq/x

eta = p*q/x
\[Eta] == p*q/x
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex10 η - ξ = p + q - 2 y 𝜂 𝜉 𝑝 𝑞 2 𝑦 {\displaystyle{\displaystyle\eta-\xi=p+q-2y}}
\eta-\xi = p+q-2y

eta - xi = p + q - 2*y
\[Eta]- \[Xi] == p + q - 2*y
Skipped - no semantic math Skipped - no semantic math - -
19.26.E16 R F ( λ , y + λ , z + λ ) = R F ( 0 , y , z ) - R F ( μ , y + μ , z + μ ) , Carlson-integral-RF 𝜆 𝑦 𝜆 𝑧 𝜆 Carlson-integral-RF 0 𝑦 𝑧 Carlson-integral-RF 𝜇 𝑦 𝜇 𝑧 𝜇 {\displaystyle{\displaystyle R_{F}\left(\lambda,y+\lambda,z+\lambda\right)={R_% {F}\left(0,y,z\right)-R_{F}\left(\mu,y+\mu,z+\mu\right),}}}
\CarlsonsymellintRF@{\lambda}{y+\lambda}{z+\lambda} = {\CarlsonsymellintRF@{0}{y}{z}-\CarlsonsymellintRF@{\mu}{y+\mu}{z+\mu},}
λ μ = y z 𝜆 𝜇 𝑦 𝑧 {\displaystyle{\displaystyle\lambda\mu=yz}}
0.5*int(1/(sqrt(t+lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity)- 0.5*int(1/(sqrt(t+mu)*sqrt(t+y + mu)*sqrt(t+(x + y*I)+ mu)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[\[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-\[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-\[Lambda]] == EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]- EllipticF[ArcCos[Sqrt[\[Mu]/(x + y*I)+ \[Mu]]],((x + y*I)+ \[Mu]-y + \[Mu])/((x + y*I)+ \[Mu]-\[Mu])]/Sqrt[(x + y*I)+ \[Mu]-\[Mu]]
Error Failure - Error
19.26.E17 α R C ( β , α + β ) + β R C ( α , α + β ) = π / 2 𝛼 Carlson-integral-RC 𝛽 𝛼 𝛽 𝛽 Carlson-integral-RC 𝛼 𝛼 𝛽 𝜋 2 {\displaystyle{\displaystyle\sqrt{\alpha}R_{C}\left(\beta,\alpha+\beta\right)+% \sqrt{\beta}R_{C}\left(\alpha,\alpha+\beta\right)=\pi/2}}
\sqrt{\alpha}\CarlsonellintRC@{\beta}{\alpha+\beta}+\sqrt{\beta}\CarlsonellintRC@{\alpha}{\alpha+\beta} = \pi/2
α + β > 0 𝛼 𝛽 0 {\displaystyle{\displaystyle\alpha+\beta>0}}
Error
Sqrt[\[Alpha]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Beta])/(\[Alpha]+ \[Beta])]+Sqrt[\[Beta]]*1/Sqrt[\[Alpha]+ \[Beta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha])/(\[Alpha]+ \[Beta])] == Pi/2
Missing Macro Error Failure - Successful [Tested: 9]
19.26.E18 R F ( x , y , z ) = 2 R F ( x + λ , y + λ , z + λ ) Carlson-integral-RF 𝑥 𝑦 𝑧 2 Carlson-integral-RF 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 {\displaystyle{\displaystyle R_{F}\left(x,y,z\right)=2R_{F}\left(x+\lambda,y+% \lambda,z+\lambda\right)}}
\CarlsonsymellintRF@{x}{y}{z} = 2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda}

0.5*int(1/(sqrt(t+x)*sqrt(t+y)*sqrt(t+x + y*I)), t = 0..infinity) = 2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity)
EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x] == 2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]
Aborted Failure Skipped - Because timed out
Failed [180 / 180]
Result: Complex[-0.6992255245511445, 1.8246422705609677]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.7332476531334464, -0.3074481161267689]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E18 2 R F ( x + λ , y + λ , z + λ ) = R F ( x + λ 4 , y + λ 4 , z + λ 4 ) 2 Carlson-integral-RF 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 Carlson-integral-RF 𝑥 𝜆 4 𝑦 𝜆 4 𝑧 𝜆 4 {\displaystyle{\displaystyle 2R_{F}\left(x+\lambda,y+\lambda,z+\lambda\right)=% R_{F}\left(\frac{x+\lambda}{4},\frac{y+\lambda}{4},\frac{z+\lambda}{4}\right)}}
2\CarlsonsymellintRF@{x+\lambda}{y+\lambda}{z+\lambda} = \CarlsonsymellintRF@{\frac{x+\lambda}{4}}{\frac{y+\lambda}{4}}{\frac{z+\lambda}{4}}

2*0.5*int(1/(sqrt(t+x + lambda)*sqrt(t+y + lambda)*sqrt(t+(x + y*I)+ lambda)), t = 0..infinity) = 0.5*int(1/(sqrt(t+(x + lambda)/(4))*sqrt(t+(y + lambda)/(4))*sqrt(t+((x + y*I)+ lambda)/(4))), t = 0..infinity)
2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]] == EllipticF[ArcCos[Sqrt[Divide[x + \[Lambda],4]/Divide[(x + y*I)+ \[Lambda],4]]],(Divide[(x + y*I)+ \[Lambda],4]-Divide[y + \[Lambda],4])/(Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4])]/Sqrt[Divide[(x + y*I)+ \[Lambda],4]-Divide[x + \[Lambda],4]]
Failure Failure Skipped - Because timed out
Failed [180 / 180]
Result: Complex[-1.1343270456997319, -2.101834604175173]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.07907692856233961, -0.3004487668798371]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E19 λ = x y + y z + z x 𝜆 𝑥 𝑦 𝑦 𝑧 𝑧 𝑥 {\displaystyle{\displaystyle\lambda=\sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}% \sqrt{x}}}
\lambda = \sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{z}+\sqrt{z}\sqrt{x}

lambda = sqrt(x)*sqrt(y)+sqrt(y)*sqrt(x + y*I)+sqrt(x + y*I)*sqrt(x)
\[Lambda] == Sqrt[x]*Sqrt[y]+Sqrt[y]*Sqrt[x + y*I]+Sqrt[x + y*I]*Sqrt[x]
Skipped - no semantic math Skipped - no semantic math - -
19.26.E20 R D ( x , y , z ) = 2 R D ( x + λ , y + λ , z + λ ) + 3 z ( z + λ ) Carlson-integral-RD 𝑥 𝑦 𝑧 2 Carlson-integral-RD 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 3 𝑧 𝑧 𝜆 {\displaystyle{\displaystyle R_{D}\left(x,y,z\right)=2R_{D}\left(x+\lambda,y+% \lambda,z+\lambda\right)+\frac{3}{\sqrt{z}(z+\lambda)}}}
\CarlsonsymellintRD@{x}{y}{z} = 2\CarlsonsymellintRD@{x+\lambda}{y+\lambda}{z+\lambda}+\frac{3}{\sqrt{z}(z+\lambda)}

Error
3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 2*3*(EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/(((x + y*I)+ \[Lambda]-y + \[Lambda])*((x + y*I)+ \[Lambda]-x + \[Lambda])^(1/2))+Divide[3,Sqrt[x + y*I]*((x + y*I)+ \[Lambda])]
Missing Macro Error Failure -
Failed [180 / 180]
Result: Complex[0.4984590390126629, -1.2092907867192135]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.5295690158190058, -2.8195127867822802]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E21 2 R G ( x , y , z ) = 4 R G ( x + λ , y + λ , z + λ ) - λ R F ( x , y , z ) - x - y - z 2 Carlson-integral-RG 𝑥 𝑦 𝑧 4 Carlson-integral-RG 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 𝜆 Carlson-integral-RF 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle 2R_{G}\left(x,y,z\right)=4R_{G}\left(x+\lambda,y+% \lambda,z+\lambda\right)-\lambda R_{F}\left(x,y,z\right)-\sqrt{x}-\sqrt{y}-% \sqrt{z}}}
2\CarlsonsymellintRG@{x}{y}{z} = 4\CarlsonsymellintRG@{x+\lambda}{y+\lambda}{z+\lambda}-\lambda\CarlsonsymellintRF@{x}{y}{z}-\sqrt{x}-\sqrt{y}-\sqrt{z}

Error
2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == 4*Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]*(EllipticE[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+(Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]])^2*EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]+Cot[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]]]^2])- \[Lambda]*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Sqrt[x]-Sqrt[y]-Sqrt[x + y*I]
Missing Macro Error Aborted -
Failed [180 / 180]
Result: Plus[Complex[2.330530943809637, 0.9206144902290859], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-4.184639587172815, 1.9117536488739475], Plus[Complex[0.7424137617640161, 0.220635885032481], Times[Complex[0.14483575015411373, 1.3558262394954135], Power[Plus[1.0, Times[Complex[0.9940169358562925, 0.4776709006307397], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[2.3171140130573056, 0.42755423781462054], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]], Times[Complex[-1.5682295148869496, 3.234090878649293], Plus[Complex[0.3473840661116648, 1.4426085854555293], Times[Complex[0.7761183239980944, 1.3014092542459557], Power[Plus[1.0, Times[Complex[0.02232909936926042, 0.49401693585629247], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26.E22 R J ( x , y , z , p ) = 2 R J ( x + λ , y + λ , z + λ , p + λ ) + 3 R C ( α 2 , β 2 ) Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 2 Carlson-integral-RJ 𝑥 𝜆 𝑦 𝜆 𝑧 𝜆 𝑝 𝜆 3 Carlson-integral-RC superscript 𝛼 2 superscript 𝛽 2 {\displaystyle{\displaystyle R_{J}\left(x,y,z,p\right)=2R_{J}\left(x+\lambda,y% +\lambda,z+\lambda,p+\lambda\right)+3R_{C}\left(\alpha^{2},\beta^{2}\right)}}
\CarlsonsymellintRJ@{x}{y}{z}{p} = 2\CarlsonsymellintRJ@{x+\lambda}{y+\lambda}{z+\lambda}{p+\lambda}+3\CarlsonellintRC@{\alpha^{2}}{\beta^{2}}

Error
3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 2*3*((x + y*I)+ \[Lambda]-x + \[Lambda])/((x + y*I)+ \[Lambda]-p + \[Lambda])*(EllipticPi[((x + y*I)+ \[Lambda]-p + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda]),ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])]-EllipticF[ArcCos[Sqrt[x + \[Lambda]/(x + y*I)+ \[Lambda]]],((x + y*I)+ \[Lambda]-y + \[Lambda])/((x + y*I)+ \[Lambda]-x + \[Lambda])])/Sqrt[(x + y*I)+ \[Lambda]-x + \[Lambda]]+ 3*1/Sqrt[\[Beta]^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Alpha]^(2))/(\[Beta]^(2))]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[α, 1.5], Rule[β, 1.5], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.26#Ex11 α = p ( x + y + z ) + x y z 𝛼 𝑝 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\alpha=p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt% {y}\sqrt{z}}}
\alpha = p(\sqrt{x}+\sqrt{y}+\sqrt{z})+\sqrt{x}\sqrt{y}\sqrt{z}

alpha = p*(sqrt(x)+sqrt(y)+sqrt(x + y*I))+sqrt(x)*sqrt(y)*sqrt(x + y*I)
\[Alpha] == p*(Sqrt[x]+Sqrt[y]+Sqrt[x + y*I])+Sqrt[x]*Sqrt[y]*Sqrt[x + y*I]
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex12 β = p ( p + λ ) 𝛽 𝑝 𝑝 𝜆 {\displaystyle{\displaystyle\beta=\sqrt{p}(p+\lambda)}}
\beta = \sqrt{p}(p+\lambda)

beta = sqrt(p)*(p + lambda)
\[Beta] == Sqrt[p]*(p + \[Lambda])
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex13 β + α = ( p + x ) ( p + y ) ( p + z ) 𝛽 𝛼 𝑝 𝑥 𝑝 𝑦 𝑝 𝑧 {\displaystyle{\displaystyle\beta+\alpha=(\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y}% )(\sqrt{p}+\sqrt{z})}}
\beta+\alpha = (\sqrt{p}+\sqrt{x})(\sqrt{p}+\sqrt{y})(\sqrt{p}+\sqrt{z})

beta + alpha = (sqrt(p)+sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(x + y*I))
\[Beta]+ \[Alpha] == (Sqrt[p]+Sqrt[x])*(Sqrt[p]+Sqrt[y])*(Sqrt[p]+Sqrt[x + y*I])
Skipped - no semantic math Skipped - no semantic math - -
19.26#Ex14 β 2 - α 2 = ( p - x ) ( p - y ) ( p - z ) superscript 𝛽 2 superscript 𝛼 2 𝑝 𝑥 𝑝 𝑦 𝑝 𝑧 {\displaystyle{\displaystyle\beta^{2}-\alpha^{2}=(p-x)(p-y)(p-z)}}
\beta^{2}-\alpha^{2} = (p-x)(p-y)(p-z)

(beta)^(2)- (alpha)^(2) = (p - x)*(p - y)*(p -(x + y*I))
\[Beta]^(2)- \[Alpha]^(2) == (p - x)*(p - y)*(p -(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.26.E24 z = ( ξ ζ + η ζ - ξ η ) 2 / ( 4 ξ η ζ ) 𝑧 superscript 𝜉 𝜁 𝜂 𝜁 𝜉 𝜂 2 4 𝜉 𝜂 𝜁 {\displaystyle{\displaystyle z=(\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta% )}}
z = (\xi\zeta+\eta\zeta-\xi\eta)^{2}/(4\xi\eta\zeta)
( ξ = ( x + λ , η = ( x + λ , ζ ) = ( x + λ fragments ( ξ fragments ( x λ , η fragments ( x λ , ζ ) fragments ( x λ {\displaystyle{\displaystyle(\xi=(x+\lambda,\eta=(x+\lambda,\zeta)=(x+\lambda}}
z = (xi*zeta + eta*zeta - xi*eta)^(2)/(4*xi*eta*zeta)
z == (\[Xi]*\[Zeta]+ \[Eta]*\[Zeta]- \[Xi]*\[Eta])^(2)/(4*\[Xi]*\[Eta]*\[Zeta])
Skipped - no semantic math Skipped - no semantic math - -
19.26.E25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) Carlson-integral-RC 𝑥 𝑦 2 Carlson-integral-RC 𝑥 𝜆 𝑦 𝜆 {\displaystyle{\displaystyle R_{C}\left(x,y\right)=2R_{C}\left(x+\lambda,y+% \lambda\right)}}
\CarlsonellintRC@{x}{y} = 2\CarlsonellintRC@{x+\lambda}{y+\lambda}
λ = y + 2 x y 𝜆 𝑦 2 𝑥 𝑦 {\displaystyle{\displaystyle\lambda=y+2\sqrt{x}\sqrt{y}}}
Error
1/Sqrt[y]*Hypergeometric2F1[1/2,1/2,3/2,1-(x)/(y)] == 2*1/Sqrt[y + \[Lambda]]*Hypergeometric2F1[1/2,1/2,3/2,1-(x + \[Lambda])/(y + \[Lambda])]
Missing Macro Error Failure -
Failed [1 / 1]
Result: Indeterminate
Test Values: {Rule[x, 0.5], Rule[y, 0.5], Rule[λ, 1.5]}

19.26.E26 R C ( x 2 , y 2 ) = R C ( a 2 , a y ) Carlson-integral-RC superscript 𝑥 2 superscript 𝑦 2 Carlson-integral-RC superscript 𝑎 2 𝑎 𝑦 {\displaystyle{\displaystyle R_{C}\left(x^{2},y^{2}\right)=R_{C}\left(a^{2},ay% \right)}}
\CarlsonellintRC@{x^{2}}{y^{2}} = \CarlsonellintRC@{a^{2}}{ay}
a = ( x + y ) / 2 , x 0 , y > 0 formulae-sequence 𝑎 𝑥 𝑦 2 formulae-sequence 𝑥 0 𝑦 0 {\displaystyle{\displaystyle a=(x+y)/2,\Re x\geq 0,\Re y>0}}
Error
1/Sqrt[(y)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((y)^(2))] == 1/Sqrt[a*y]*Hypergeometric2F1[1/2,1/2,3/2,1-((a)^(2))/(a*y)]
Missing Macro Error Aborted -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[x, 1.5], Rule[y, 1.5]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[x, 0.5], Rule[y, 0.5]}

... skip entries to safe data
19.26.E27 R C ( x 2 , x 2 - θ ) = 2 R C ( s 2 , s 2 - θ ) Carlson-integral-RC superscript 𝑥 2 superscript 𝑥 2 𝜃 2 Carlson-integral-RC superscript 𝑠 2 superscript 𝑠 2 𝜃 {\displaystyle{\displaystyle R_{C}\left(x^{2},x^{2}-\theta\right)=2R_{C}\left(% s^{2},s^{2}-\theta\right)}}
\CarlsonellintRC@{x^{2}}{x^{2}-\theta} = 2\CarlsonellintRC@{s^{2}}{s^{2}-\theta}
s = x + x 2 - θ , θ x 2 formulae-sequence 𝑠 𝑥 superscript 𝑥 2 𝜃 𝜃 superscript 𝑥 2 {\displaystyle{\displaystyle s=x+\sqrt{x^{2}-\theta},\theta\neq x^{2}}}
Error
1/Sqrt[(x)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((x)^(2))/((x)^(2)- \[Theta])] == 2*1/Sqrt[(s)^(2)- \[Theta]]*Hypergeometric2F1[1/2,1/2,3/2,1-((s)^(2))/((s)^(2)- \[Theta])]
Missing Macro Error Failure - Successful [Tested: 2]
19.27#Ex1 a = 1 2 ( x + y ) 𝑎 1 2 𝑥 𝑦 {\displaystyle{\displaystyle a=\tfrac{1}{2}(x+y)}}
a = \tfrac{1}{2}(x+y)

a = (1)/(2)*(x + y)
a == Divide[1,2]*(x + y)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex2 b = 1 2 ( y + z ) 𝑏 1 2 𝑦 𝑧 {\displaystyle{\displaystyle b=\tfrac{1}{2}(y+z)}}
b = \tfrac{1}{2}(y+z)

b = (1)/(2)*(y +(x + y*I))
b == Divide[1,2]*(y +(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex3 c = 1 3 ( x + y + z ) 𝑐 1 3 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle c=\tfrac{1}{3}(x+y+z)}}
c = \tfrac{1}{3}(x+y+z)

c = (1)/(3)*(x + y +(x + y*I))
c == Divide[1,3]*(x + y +(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex4 f = ( x y z ) 1 / 3 𝑓 superscript 𝑥 𝑦 𝑧 1 3 {\displaystyle{\displaystyle f=(xyz)^{1/3}}}
f = (xyz)^{1/3}

f = (x*y*(x + y*I))^(1/3)
f == (x*y*(x + y*I))^(1/3)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex5 g = ( x y ) 1 / 2 𝑔 superscript 𝑥 𝑦 1 2 {\displaystyle{\displaystyle g=(xy)^{1/2}}}
g = (xy)^{1/2}

g = (x*y)^(1/2)
g == (x*y)^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
19.27#Ex6 h = ( y z ) 1 / 2 superscript 𝑦 𝑧 1 2 {\displaystyle{\displaystyle h=(yz)^{1/2}}}
h = (yz)^{1/2}

h = (y*(x + y*I))^(1/2)
h == (y*(x + y*I))^(1/2)
Skipped - no semantic math Skipped - no semantic math - -
19.28.E1 0 1 t σ - 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 superscript subscript 0 1 superscript 𝑡 𝜎 1 Carlson-integral-RF 0 𝑡 1 𝑡 1 2 superscript Euler-Beta 𝜎 1 2 2 {\displaystyle{\displaystyle\int_{0}^{1}t^{\sigma-1}R_{F}\left(0,t,1\right)% \mathrm{d}t=\tfrac{1}{2}\left(\mathrm{B}\left(\sigma,\tfrac{1}{2}\right)\right% )^{2}}}
\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRF@{0}{t}{1}\diff{t} = \tfrac{1}{2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
( σ ) > 0 , ( ( σ ) + b ) > 0 , ( a + ( 1 2 ) ) > 0 formulae-sequence 𝜎 0 formulae-sequence 𝜎 𝑏 0 𝑎 1 2 0 {\displaystyle{\displaystyle\Re(\sigma)>0,\Re((\sigma)+b)>0,\Re(a+(\tfrac{1}{2% }))>0}}
int((t)^(sigma - 1)* 0.5*int(1/(sqrt(t+0)*sqrt(t+t)*sqrt(t+1)), t = 0..infinity), t = 0..1) = (1)/(2)*(Beta(sigma, (1)/(2)))^(2)
Integrate[(t)^(\[Sigma]- 1)* EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]/Sqrt[1-0], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Failure Aborted
Failed [10 / 10]
Result: Float(undefined)+1.162857938*I
Test Values: {sigma = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+.9984297790*I
Test Values: {sigma = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
19.28.E2 0 1 t σ - 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 superscript subscript 0 1 superscript 𝑡 𝜎 1 Carlson-integral-RG 0 𝑡 1 𝑡 𝜎 4 𝜎 2 superscript Euler-Beta 𝜎 1 2 2 {\displaystyle{\displaystyle\int_{0}^{1}t^{\sigma-1}R_{G}\left(0,t,1\right)% \mathrm{d}t=\frac{\sigma}{4\sigma+2}\left(\mathrm{B}\left(\sigma,\tfrac{1}{2}% \right)\right)^{2}}}
\int_{0}^{1}t^{\sigma-1}\CarlsonsymellintRG@{0}{t}{1}\diff{t} = \frac{\sigma}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
( σ ) > 0 , ( ( σ ) + b ) > 0 , ( a + ( 1 2 ) ) > 0 formulae-sequence 𝜎 0 formulae-sequence 𝜎 𝑏 0 𝑎 1 2 0 {\displaystyle{\displaystyle\Re(\sigma)>0,\Re((\sigma)+b)>0,\Re(a+(\tfrac{1}{2% }))>0}}
Error
Integrate[(t)^(\[Sigma]- 1)* Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]), {t, 0, 1}, GenerateConditions->None] == Divide[\[Sigma],4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E3 0 1 t σ - 1 ( 1 - t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 superscript subscript 0 1 superscript 𝑡 𝜎 1 1 𝑡 Carlson-integral-RD 0 𝑡 1 𝑡 3 4 𝜎 2 superscript Euler-Beta 𝜎 1 2 2 {\displaystyle{\displaystyle\int_{0}^{1}t^{\sigma-1}(1-t)R_{D}\left(0,t,1% \right)\mathrm{d}t=\frac{3}{4\sigma+2}\left(\mathrm{B}\left(\sigma,\tfrac{1}{2% }\right)\right)^{2}}}
\int_{0}^{1}t^{\sigma-1}(1-t)\CarlsonsymellintRD@{0}{t}{1}\diff{t} = \frac{3}{4\sigma+2}\left(\EulerBeta@{\sigma}{\tfrac{1}{2}}\right)^{2}
( σ ) > 0 , ( ( σ ) + b ) > 0 , ( a + ( 1 2 ) ) > 0 formulae-sequence 𝜎 0 formulae-sequence 𝜎 𝑏 0 𝑎 1 2 0 {\displaystyle{\displaystyle\Re(\sigma)>0,\Re((\sigma)+b)>0,\Re(a+(\tfrac{1}{2% }))>0}}
Error
Integrate[(t)^(\[Sigma]- 1)*(1 - t)*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-t)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-t)/(1-0)])/((1-t)*(1-0)^(1/2)), {t, 0, 1}, GenerateConditions->None] == Divide[3,4*\[Sigma]+ 2]*(Beta[\[Sigma], Divide[1,2]])^(2)
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E5 z R D ( x , y , t ) d t = 6 R F ( x , y , z ) superscript subscript 𝑧 Carlson-integral-RD 𝑥 𝑦 𝑡 𝑡 6 Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle\int_{z}^{\infty}R_{D}\left(x,y,t\right)\mathrm{d}% t=6R_{F}\left(x,y,z\right)}}
\int_{z}^{\infty}\CarlsonsymellintRD@{x}{y}{t}\diff{t} = 6\CarlsonsymellintRF@{x}{y}{z}

Error
Integrate[3*(EllipticF[ArcCos[Sqrt[x/t]],(t-y)/(t-x)]-EllipticE[ArcCos[Sqrt[x/t]],(t-y)/(t-x)])/((t-y)*(t-x)^(1/2)), {t, (x + y*I), Infinity}, GenerateConditions->None] == 6*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E6 0 1 R D ( x , y , v 2 z + ( 1 - v 2 ) p ) d v = R J ( x , y , z , p ) superscript subscript 0 1 Carlson-integral-RD 𝑥 𝑦 superscript 𝑣 2 𝑧 1 superscript 𝑣 2 𝑝 𝑣 Carlson-integral-RJ 𝑥 𝑦 𝑧 𝑝 {\displaystyle{\displaystyle\int_{0}^{1}R_{D}\left(x,y,v^{2}z+(1-v^{2})p\right% )\mathrm{d}v=R_{J}\left(x,y,z,p\right)}}
\int_{0}^{1}\CarlsonsymellintRD@{x}{y}{v^{2}z+(1-v^{2})p}\diff{v} = \CarlsonsymellintRJ@{x}{y}{z}{p}

Error
Integrate[3*(EllipticF[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)]-EllipticE[ArcCos[Sqrt[x/(v)^(2)*(x + y*I)+(1 - (v)^(2))*p]],((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)/((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)])/(((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-y)*((v)^(2)*(x + y*I)+(1 - (v)^(2))*p-x)^(1/2)), {v, 0, 1}, GenerateConditions->None] == 3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E7 0 R J ( x , y , z , r 2 ) d r = 3 2 π R F ( x y , x z , y z ) superscript subscript 0 Carlson-integral-RJ 𝑥 𝑦 𝑧 superscript 𝑟 2 𝑟 3 2 𝜋 Carlson-integral-RF 𝑥 𝑦 𝑥 𝑧 𝑦 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}R_{J}\left(x,y,z,r^{2}\right)% \mathrm{d}r=\tfrac{3}{2}\pi R_{F}\left(xy,xz,yz\right)}}
\int_{0}^{\infty}\CarlsonsymellintRJ@{x}{y}{z}{r^{2}}\diff{r} = \tfrac{3}{2}\pi\CarlsonsymellintRF@{xy}{xz}{yz}

Error
Integrate[3*(x + y*I-x)/(x + y*I-(r)^(2))*(EllipticPi[(x + y*I-(r)^(2))/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x], {r, 0, Infinity}, GenerateConditions->None] == Divide[3,2]*Pi*EllipticF[ArcCos[Sqrt[x*y/y*(x + y*I)]],(y*(x + y*I)-x*(x + y*I))/(y*(x + y*I)-x*y)]/Sqrt[y*(x + y*I)-x*y]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E8 0 R J ( t x , y , z , t p ) d t = 6 p R C ( p , x ) R F ( 0 , y , z ) superscript subscript 0 Carlson-integral-RJ 𝑡 𝑥 𝑦 𝑧 𝑡 𝑝 𝑡 6 𝑝 Carlson-integral-RC 𝑝 𝑥 Carlson-integral-RF 0 𝑦 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}R_{J}\left(tx,y,z,tp\right)% \mathrm{d}t=\frac{6}{\sqrt{p}}R_{C}\left(p,x\right)R_{F}\left(0,y,z\right)}}
\int_{0}^{\infty}\CarlsonsymellintRJ@{tx}{y}{z}{tp}\diff{t} = \frac{6}{\sqrt{p}}\CarlsonellintRC@{p}{x}\CarlsonsymellintRF@{0}{y}{z}

Error
Integrate[3*(x + y*I-t*x)/(x + y*I-t*p)*(EllipticPi[(x + y*I-t*p)/(x + y*I-t*x),ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)]-EllipticF[ArcCos[Sqrt[t*x/x + y*I]],(x + y*I-y)/(x + y*I-t*x)])/Sqrt[x + y*I-t*x], {t, 0, Infinity}, GenerateConditions->None] == Divide[6,Sqrt[p]]*1/Sqrt[x]*Hypergeometric2F1[1/2,1/2,3/2,1-(p)/(x)]*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
Missing Macro Error Aborted - Skipped - Because timed out
19.28.E9 0 π / 2 R F ( sin 2 θ cos 2 ( x + y ) , sin 2 θ cos 2 ( x - y ) , 1 ) d θ = R F ( 0 , cos 2 x , 1 ) R F ( 0 , cos 2 y , 1 ) superscript subscript 0 𝜋 2 Carlson-integral-RF 2 𝜃 2 𝑥 𝑦 2 𝜃 2 𝑥 𝑦 1 𝜃 Carlson-integral-RF 0 2 𝑥 1 Carlson-integral-RF 0 2 𝑦 1 {\displaystyle{\displaystyle\int_{0}^{\pi/2}R_{F}\left({\sin^{2}}\theta{\cos^{% 2}}\left(x+y\right),{\sin^{2}}\theta{\cos^{2}}\left(x-y\right),1\right)\mathrm% {d}\theta=R_{F}\left(0,{\cos^{2}}x,1\right)R_{F}\left(0,{\cos^{2}}y,1\right)}}
\int_{0}^{\pi/2}\CarlsonsymellintRF@{\sin^{2}@@{\theta}\cos^{2}@{x+y}}{\sin^{2}@@{\theta}\cos^{2}@{x-y}}{1}\diff{\theta} = \CarlsonsymellintRF@{0}{\cos^{2}@@{x}}{1}\CarlsonsymellintRF@{0}{\cos^{2}@@{y}}{1}

int(0.5*int(1/(sqrt(t+(sin(theta))^(2)* (cos(x + y))^(2))*sqrt(t+(sin(theta))^(2)* (cos(x - y))^(2))*sqrt(t+1)), t = 0..infinity), theta = 0..Pi/2) = 0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(x))^(2))*sqrt(t+1)), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(cos(y))^(2))*sqrt(t+1)), t = 0..infinity)
Integrate[EllipticF[ArcCos[Sqrt[(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)/1]],(1-(Sin[\[Theta]])^(2)* (Cos[x - y])^(2))/(1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2))]/Sqrt[1-(Sin[\[Theta]])^(2)* (Cos[x + y])^(2)], {\[Theta], 0, Pi/2}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[x])^(2))/(1-0)]/Sqrt[1-0]*EllipticF[ArcCos[Sqrt[0/1]],(1-(Cos[y])^(2))/(1-0)]/Sqrt[1-0]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.28.E10 0 R F ( ( a c + b d ) 2 , ( a d + b c ) 2 , 4 a b c d cosh 2 z ) d z = 1 2 R F ( 0 , a 2 , b 2 ) R F ( 0 , c 2 , d 2 ) superscript subscript 0 Carlson-integral-RF superscript 𝑎 𝑐 𝑏 𝑑 2 superscript 𝑎 𝑑 𝑏 𝑐 2 4 𝑎 𝑏 𝑐 𝑑 2 𝑧 𝑧 1 2 Carlson-integral-RF 0 superscript 𝑎 2 superscript 𝑏 2 Carlson-integral-RF 0 superscript 𝑐 2 superscript 𝑑 2 {\displaystyle{\displaystyle\int_{0}^{\infty}R_{F}\left((ac+bd)^{2},(ad+bc)^{2% },4abcd{\cosh^{2}}z\right)\mathrm{d}z=\tfrac{1}{2}R_{F}\left(0,a^{2},b^{2}% \right)R_{F}\left(0,c^{2},d^{2}\right)}}
\int_{0}^{\infty}\CarlsonsymellintRF@{(ac+bd)^{2}}{(ad+bc)^{2}}{4abcd\cosh^{2}@@{z}}\diff{z} = \tfrac{1}{2}\CarlsonsymellintRF@{0}{a^{2}}{b^{2}}\CarlsonsymellintRF@{0}{c^{2}}{d^{2}}

int(0.5*int(1/(sqrt(t+(a*c + b*d)^(2))*sqrt(t+(a*d + b*c)^(2))*sqrt(t+4*a*b*c*d*(cosh(z))^(2))), t = 0..infinity), z = 0..infinity) = (1)/(2)*0.5*int(1/(sqrt(t+0)*sqrt(t+(a)^(2))*sqrt(t+(b)^(2))), t = 0..infinity)*0.5*int(1/(sqrt(t+0)*sqrt(t+(c)^(2))*sqrt(t+(d)^(2))), t = 0..infinity)
Integrate[EllipticF[ArcCos[Sqrt[(a*c + b*d)^(2)/4*a*b*c*d*(Cosh[z])^(2)]],(4*a*b*c*d*(Cosh[z])^(2)-(a*d + b*c)^(2))/(4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2))]/Sqrt[4*a*b*c*d*(Cosh[z])^(2)-(a*c + b*d)^(2)], {z, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]/Sqrt[(b)^(2)-0]*EllipticF[ArcCos[Sqrt[0/(d)^(2)]],((d)^(2)-(c)^(2))/((d)^(2)-0)]/Sqrt[(d)^(2)-0]
Error Aborted - Skipped - Because timed out
19.29#Ex1 X α = a α + b α x subscript 𝑋 𝛼 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑥 {\displaystyle{\displaystyle X_{\alpha}=\sqrt{a_{\alpha}+b_{\alpha}x}}}
X_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}x}

X[alpha] = sqrt(a[alpha]+ b[alpha]*x)
Subscript[X, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex2 Y α = a α + b α y subscript 𝑌 𝛼 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑦 {\displaystyle{\displaystyle Y_{\alpha}=\sqrt{a_{\alpha}+b_{\alpha}y}}}
Y_{\alpha} = \sqrt{a_{\alpha}+b_{\alpha}y}
x > y , 1 α , α 5 formulae-sequence 𝑥 𝑦 formulae-sequence 1 𝛼 𝛼 5 {\displaystyle{\displaystyle x>y,1\leq\alpha,\alpha\leq 5}}
Y[alpha] = sqrt(a[alpha]+ b[alpha]*y)
Subscript[Y, \[Alpha]] == Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E2 d α β = a α b β - a β b α subscript 𝑑 𝛼 𝛽 subscript 𝑎 𝛼 subscript 𝑏 𝛽 subscript 𝑎 𝛽 subscript 𝑏 𝛼 {\displaystyle{\displaystyle d_{\alpha\beta}=a_{\alpha}b_{\beta}-a_{\beta}b_{% \alpha}}}
d_{\alpha\beta} = a_{\alpha}b_{\beta}-a_{\beta}b_{\alpha}
d α β 0 , α β formulae-sequence subscript 𝑑 𝛼 𝛽 0 𝛼 𝛽 {\displaystyle{\displaystyle d_{\alpha\beta}\neq 0,\alpha\neq\beta}}
d[alpha*beta] = a[alpha]*b[beta]- a[beta]*b[alpha]
Subscript[d, \[Alpha]*\[Beta]] == Subscript[a, \[Alpha]]*Subscript[b, \[Beta]]- Subscript[a, \[Beta]]*Subscript[b, \[Alpha]]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E3 s ( t ) = α = 1 4 a α + b α t 𝑠 𝑡 superscript subscript product 𝛼 1 4 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑡 {\displaystyle{\displaystyle s(t)=\prod_{\alpha=1}^{4}\sqrt{a_{\alpha}+b_{% \alpha}t}}}
s(t) = \prod_{\alpha=1}^{4}\sqrt{a_{\alpha}+b_{\alpha}t}

s(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..4)
s[t] == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 4}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E4 y x d t s ( t ) = 2 R F ( U 12 2 , U 13 2 , U 23 2 ) superscript subscript 𝑦 𝑥 𝑡 𝑠 𝑡 2 Carlson-integral-RF superscript subscript 𝑈 12 2 superscript subscript 𝑈 13 2 superscript subscript 𝑈 23 2 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{s(t)}=2R_{F}\left(U% _{12}^{2},U_{13}^{2},U_{23}^{2}\right)}}
\int_{y}^{x}\frac{\diff{t}}{s(t)} = 2\CarlsonsymellintRF@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}}

int((1)/(s(t)), t = y..x) = 2*0.5*int(1/(sqrt(t+(U[12])^(2))*sqrt(t+(U[13])^(2))*sqrt(t+(U[23])^(2))), t = 0..infinity)
Integrate[Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))]/Sqrt[(Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex3 U α β = ( X α X β Y γ Y δ + Y α Y β X γ X δ ) / ( x - y ) subscript 𝑈 𝛼 𝛽 subscript 𝑋 𝛼 subscript 𝑋 𝛽 subscript 𝑌 𝛾 subscript 𝑌 𝛿 subscript 𝑌 𝛼 subscript 𝑌 𝛽 subscript 𝑋 𝛾 subscript 𝑋 𝛿 𝑥 𝑦 {\displaystyle{\displaystyle U_{\alpha\beta}=(X_{\alpha}X_{\beta}Y_{\gamma}Y_{% \delta}+Y_{\alpha}Y_{\beta}X_{\gamma}X_{\delta})/(x-y)}}
U_{\alpha\beta} = (X_{\alpha}X_{\beta}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}X_{\gamma}X_{\delta})/(x-y)

U[alpha*beta] = (X[alpha]*X[beta]*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*X[gamma]*X[delta])/(x - y)
Subscript[U, \[Alpha]*\[Beta]] == (Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]])/(x - y)
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex4 U α β = U β α subscript 𝑈 𝛼 𝛽 subscript 𝑈 𝛽 𝛼 {\displaystyle{\displaystyle U_{\alpha\beta}=U_{\beta\alpha}}}
U_{\alpha\beta} = U_{\beta\alpha}

U[alpha*beta] = U[beta*alpha]
Subscript[U, \[Alpha]*\[Beta]] == Subscript[U, \[Beta]*\[Alpha]]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex5 U α β 2 - U α γ 2 = d α δ d β γ superscript subscript 𝑈 𝛼 𝛽 2 superscript subscript 𝑈 𝛼 𝛾 2 subscript 𝑑 𝛼 𝛿 subscript 𝑑 𝛽 𝛾 {\displaystyle{\displaystyle U_{\alpha\beta}^{2}-U_{\alpha\gamma}^{2}=d_{% \alpha\delta}d_{\beta\gamma}}}
U_{\alpha\beta}^{2}-U_{\alpha\gamma}^{2} = d_{\alpha\delta}d_{\beta\gamma}

(U[alpha*beta])^(2)- (U[alpha*gamma])^(2) = d[alpha*delta]*d[beta*gamma]
(Subscript[U, \[Alpha]*\[Beta]])^(2)- (Subscript[U, \[Alpha]*\[Gamma]])^(2) == Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*\[Gamma]]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex6 U α β = b α b β Y γ Y δ + Y α Y β b γ b δ , subscript 𝑈 𝛼 𝛽 subscript 𝑏 𝛼 subscript 𝑏 𝛽 subscript 𝑌 𝛾 subscript 𝑌 𝛿 subscript 𝑌 𝛼 subscript 𝑌 𝛽 subscript 𝑏 𝛾 subscript 𝑏 𝛿 {\displaystyle{\displaystyle U_{\alpha\beta}=\sqrt{b_{\alpha}}\sqrt{b_{\beta}}% Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}\sqrt{b_{\gamma}}\sqrt{b_{\delta}},}}
U_{\alpha\beta} = \sqrt{b_{\alpha}}\sqrt{b_{\beta}}Y_{\gamma}Y_{\delta}+Y_{\alpha}Y_{\beta}\sqrt{b_{\gamma}}\sqrt{b_{\delta}},
x = 𝑥 {\displaystyle{\displaystyle x=\infty}}
U[alpha*beta] = sqrt(b[alpha])*sqrt(b[beta])*Y[gamma]*Y[delta]+ Y[alpha]*Y[beta]*sqrt(b[gamma])*sqrt(b[delta])
Subscript[U, \[Alpha]*\[Beta]] == Sqrt[Subscript[b, \[Alpha]]]*Sqrt[Subscript[b, \[Beta]]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]]+ Subscript[Y, \[Alpha]]*Subscript[Y, \[Beta]]*Sqrt[Subscript[b, \[Gamma]]]*Sqrt[Subscript[b, \[Delta]]]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex7 U α β = X α X β - b γ - b δ + - b α - b β X γ X δ subscript 𝑈 𝛼 𝛽 subscript 𝑋 𝛼 subscript 𝑋 𝛽 subscript 𝑏 𝛾 subscript 𝑏 𝛿 subscript 𝑏 𝛼 subscript 𝑏 𝛽 subscript 𝑋 𝛾 subscript 𝑋 𝛿 {\displaystyle{\displaystyle U_{\alpha\beta}=X_{\alpha}X_{\beta}\sqrt{-b_{% \gamma}}\sqrt{-b_{\delta}}+\sqrt{-b_{\alpha}}\sqrt{-b_{\beta}}X_{\gamma}X_{% \delta}}}
U_{\alpha\beta} = X_{\alpha}X_{\beta}\sqrt{-b_{\gamma}}\sqrt{-b_{\delta}}+\sqrt{-b_{\alpha}}\sqrt{-b_{\beta}}X_{\gamma}X_{\delta}
y = - 𝑦 {\displaystyle{\displaystyle y=-\infty}}
U[alpha*beta] = X[alpha]*X[beta]*sqrt(- b[gamma])*sqrt(- b[delta])+sqrt(- b[alpha])*sqrt(- b[beta])*X[gamma]*X[delta]
Subscript[U, \[Alpha]*\[Beta]] == Subscript[X, \[Alpha]]*Subscript[X, \[Beta]]*Sqrt[- Subscript[b, \[Gamma]]]*Sqrt[- Subscript[b, \[Delta]]]+Sqrt[- Subscript[b, \[Alpha]]]*Sqrt[- Subscript[b, \[Beta]]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E7 y x a α + b α t a δ + b δ t d t s ( t ) = 2 3 d α β d α γ R D ( U α β 2 , U α γ 2 , U α δ 2 ) + 2 X α Y α X δ Y δ U α δ superscript subscript 𝑦 𝑥 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑡 subscript 𝑎 𝛿 subscript 𝑏 𝛿 𝑡 𝑡 𝑠 𝑡 2 3 subscript 𝑑 𝛼 𝛽 subscript 𝑑 𝛼 𝛾 Carlson-integral-RD superscript subscript 𝑈 𝛼 𝛽 2 superscript subscript 𝑈 𝛼 𝛾 2 superscript subscript 𝑈 𝛼 𝛿 2 2 subscript 𝑋 𝛼 subscript 𝑌 𝛼 subscript 𝑋 𝛿 subscript 𝑌 𝛿 subscript 𝑈 𝛼 𝛿 {\displaystyle{\displaystyle\int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{% \delta}+b_{\delta}t}\frac{\mathrm{d}t}{s(t)}=\tfrac{2}{3}d_{\alpha\beta}d_{% \alpha\gamma}R_{D}\left(U_{\alpha\beta}^{2},U_{\alpha\gamma}^{2},U_{\alpha% \delta}^{2}\right)+\frac{2X_{\alpha}Y_{\alpha}}{X_{\delta}Y_{\delta}U_{\alpha% \delta}}}}
\int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{\delta}+b_{\delta}t}\frac{\diff{t}}{s(t)} = \tfrac{2}{3}d_{\alpha\beta}d_{\alpha\gamma}\CarlsonsymellintRD@{U_{\alpha\beta}^{2}}{U_{\alpha\gamma}^{2}}{U_{\alpha\delta}^{2}}+\frac{2X_{\alpha}Y_{\alpha}}{X_{\delta}Y_{\delta}U_{\alpha\delta}}
U α δ 0 subscript 𝑈 𝛼 𝛿 0 {\displaystyle{\displaystyle U_{\alpha\delta}\neq 0}}
Error
Integrate[Divide[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t,Subscript[a, \[Delta]]+ Subscript[b, \[Delta]]*t]*Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == Divide[2,3]*Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*3*(EllipticF[ArcCos[Sqrt[(Subscript[U, \[Alpha]*\[Beta]])^(2)/(Subscript[U, \[Alpha]*\[Delta]])^(2)]],((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))/((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))]-EllipticE[ArcCos[Sqrt[(Subscript[U, \[Alpha]*\[Beta]])^(2)/(Subscript[U, \[Alpha]*\[Delta]])^(2)]],((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))/((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))])/(((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Gamma]])^(2))*((Subscript[U, \[Alpha]*\[Delta]])^(2)-(Subscript[U, \[Alpha]*\[Beta]])^(2))^(1/2))+Divide[2*Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]],Subscript[X, \[Delta]]*Subscript[Y, \[Delta]]*Subscript[U, \[Alpha]*\[Delta]]]
Missing Macro Error Aborted - Skipped - Because timed out
19.29.E8 y x a α + b α t a 5 + b 5 t d t s ( t ) = 2 3 d α β d α γ d α δ d α 5 R J ( U 12 2 , U 13 2 , U 23 2 , U α 5 2 ) + 2 R C ( S α 5 2 , Q α 5 2 ) superscript subscript 𝑦 𝑥 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑡 subscript 𝑎 5 subscript 𝑏 5 𝑡 𝑡 𝑠 𝑡 2 3 subscript 𝑑 𝛼 𝛽 subscript 𝑑 𝛼 𝛾 subscript 𝑑 𝛼 𝛿 subscript 𝑑 𝛼 5 Carlson-integral-RJ superscript subscript 𝑈 12 2 superscript subscript 𝑈 13 2 superscript subscript 𝑈 23 2 superscript subscript 𝑈 𝛼 5 2 2 Carlson-integral-RC superscript subscript 𝑆 𝛼 5 2 superscript subscript 𝑄 𝛼 5 2 {\displaystyle{\displaystyle\int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{5}+b_% {5}t}\frac{\mathrm{d}t}{s(t)}=\frac{2}{3}\frac{d_{\alpha\beta}d_{\alpha\gamma}% d_{\alpha\delta}}{d_{\alpha 5}}R_{J}\left(U_{12}^{2},U_{13}^{2},U_{23}^{2},U_{% \alpha 5}^{2}\right)+2R_{C}\left(S_{\alpha 5}^{2},Q_{\alpha 5}^{2}\right)}}
\int_{y}^{x}\frac{a_{\alpha}+b_{\alpha}t}{a_{5}+b_{5}t}\frac{\diff{t}}{s(t)} = \frac{2}{3}\frac{d_{\alpha\beta}d_{\alpha\gamma}d_{\alpha\delta}}{d_{\alpha 5}}\CarlsonsymellintRJ@{U_{12}^{2}}{U_{13}^{2}}{U_{23}^{2}}{U_{\alpha 5}^{2}}+2\CarlsonellintRC@{S_{\alpha 5}^{2}}{Q_{\alpha 5}^{2}}

Error
Integrate[Divide[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t,Subscript[a, 5]+ Subscript[b, 5]*t]*Divide[1,s[t]], {t, y, x}, GenerateConditions->None] == Divide[2,3]*Divide[Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*Subscript[d, \[Alpha]*\[Delta]],Subscript[d, \[Alpha]*5]]*3*((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, \[Alpha]*5])^(2))*(EllipticPi[((Subscript[U, 23])^(2)-(Subscript[U, \[Alpha]*5])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)),ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))]-EllipticF[ArcCos[Sqrt[(Subscript[U, 12])^(2)/(Subscript[U, 23])^(2)]],((Subscript[U, 23])^(2)-(Subscript[U, 13])^(2))/((Subscript[U, 23])^(2)-(Subscript[U, 12])^(2))])/Sqrt[(Subscript[U, 23])^(2)-(Subscript[U, 12])^(2)]+ 2*1/Sqrt[(Subscript[Q, \[Alpha]*5])^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((Subscript[S, \[Alpha]*5])^(2))/((Subscript[Q, \[Alpha]*5])^(2))]
Missing Macro Error Aborted - Skipped - Because timed out
19.29#Ex8 U α 5 2 = U α β 2 - d α γ d α δ d β 5 d α 5 superscript subscript 𝑈 𝛼 5 2 superscript subscript 𝑈 𝛼 𝛽 2 subscript 𝑑 𝛼 𝛾 subscript 𝑑 𝛼 𝛿 subscript 𝑑 𝛽 5 subscript 𝑑 𝛼 5 {\displaystyle{\displaystyle U_{\alpha 5}^{2}=U_{\alpha\beta}^{2}-\frac{d_{% \alpha\gamma}d_{\alpha\delta}d_{\beta 5}}{d_{\alpha 5}}}}
U_{\alpha 5}^{2} = U_{\alpha\beta}^{2}-\frac{d_{\alpha\gamma}d_{\alpha\delta}d_{\beta 5}}{d_{\alpha 5}}

(U[alpha*5])^(2) = (U[alpha*beta])^(2)-(d[alpha*gamma]*d[alpha*delta]*d[beta*5])/(d[alpha*5])
(Subscript[U, \[Alpha]*5])^(2) == (Subscript[U, \[Alpha]*\[Beta]])^(2)-Divide[Subscript[d, \[Alpha]*\[Gamma]]*Subscript[d, \[Alpha]*\[Delta]]*Subscript[d, \[Beta]*5],Subscript[d, \[Alpha]*5]]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex9 S α 5 = 1 x - y ( X β X γ X δ X α Y 5 2 + Y β Y γ Y δ Y α X 5 2 ) subscript 𝑆 𝛼 5 1 𝑥 𝑦 subscript 𝑋 𝛽 subscript 𝑋 𝛾 subscript 𝑋 𝛿 subscript 𝑋 𝛼 superscript subscript 𝑌 5 2 subscript 𝑌 𝛽 subscript 𝑌 𝛾 subscript 𝑌 𝛿 subscript 𝑌 𝛼 superscript subscript 𝑋 5 2 {\displaystyle{\displaystyle S_{\alpha 5}=\frac{1}{x-y}\left(\frac{X_{\beta}X_% {\gamma}X_{\delta}}{X_{\alpha}}Y_{5}^{2}+\frac{Y_{\beta}Y_{\gamma}Y_{\delta}}{% Y_{\alpha}}X_{5}^{2}\right)}}
S_{\alpha 5} = \frac{1}{x-y}\left(\frac{X_{\beta}X_{\gamma}X_{\delta}}{X_{\alpha}}Y_{5}^{2}+\frac{Y_{\beta}Y_{\gamma}Y_{\delta}}{Y_{\alpha}}X_{5}^{2}\right)

S[alpha*5] = (1)/(x - y)*((X[beta]*X[gamma]*X[delta])/(X[alpha])*(Y[5])^(2)+(Y[beta]*Y[gamma]*Y[delta])/(Y[alpha])*(X[5])^(2))
Subscript[S, \[Alpha]*5] == Divide[1,x - y]*(Divide[Subscript[X, \[Beta]]*Subscript[X, \[Gamma]]*Subscript[X, \[Delta]],Subscript[X, \[Alpha]]]*(Subscript[Y, 5])^(2)+Divide[Subscript[Y, \[Beta]]*Subscript[Y, \[Gamma]]*Subscript[Y, \[Delta]],Subscript[Y, \[Alpha]]]*(Subscript[X, 5])^(2))
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex10 Q α 5 = X 5 Y 5 X α Y α U α 5 subscript 𝑄 𝛼 5 subscript 𝑋 5 subscript 𝑌 5 subscript 𝑋 𝛼 subscript 𝑌 𝛼 subscript 𝑈 𝛼 5 {\displaystyle{\displaystyle Q_{\alpha 5}=\frac{X_{5}Y_{5}}{X_{\alpha}Y_{% \alpha}}U_{\alpha 5}}}
Q_{\alpha 5} = \frac{X_{5}Y_{5}}{X_{\alpha}Y_{\alpha}}U_{\alpha 5}

Q[alpha*5] = (X[5]*Y[5])/(X[alpha]*Y[alpha])*U[alpha*5]
Subscript[Q, \[Alpha]*5] == Divide[Subscript[X, 5]*Subscript[Y, 5],Subscript[X, \[Alpha]]*Subscript[Y, \[Alpha]]]*Subscript[U, \[Alpha]*5]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex11 S α 5 2 - Q α 5 2 = d β 5 d γ 5 d δ 5 d α 5 superscript subscript 𝑆 𝛼 5 2 superscript subscript 𝑄 𝛼 5 2 subscript 𝑑 𝛽 5 subscript 𝑑 𝛾 5 subscript 𝑑 𝛿 5 subscript 𝑑 𝛼 5 {\displaystyle{\displaystyle S_{\alpha 5}^{2}-Q_{\alpha 5}^{2}=\frac{d_{\beta 5% }d_{\gamma 5}d_{\delta 5}}{d_{\alpha 5}}}}
S_{\alpha 5}^{2}-Q_{\alpha 5}^{2} = \frac{d_{\beta 5}d_{\gamma 5}d_{\delta 5}}{d_{\alpha 5}}

(S[alpha*5])^(2)- (Q[alpha*5])^(2) = (d[beta*5]*d[gamma*5]*d[delta*5])/(d[alpha*5])
(Subscript[S, \[Alpha]*5])^(2)- (Subscript[Q, \[Alpha]*5])^(2) == Divide[Subscript[d, \[Beta]*5]*Subscript[d, \[Gamma]*5]*Subscript[d, \[Delta]*5],Subscript[d, \[Alpha]*5]]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E10 u b a - t ( b - t ) ( t - c ) 3 d t = - 2 3 ( a - b ) ( b - u ) 3 / 2 R D + 2 b - c ( a - u ) ( b - u ) u - c superscript subscript 𝑢 𝑏 𝑎 𝑡 𝑏 𝑡 superscript 𝑡 𝑐 3 𝑡 2 3 𝑎 𝑏 superscript 𝑏 𝑢 3 2 Carlson-integral-RD 𝑎 𝑏 𝑢 𝑐 𝑏 𝑐 𝑎 𝑢 𝑎 𝑏 𝑏 𝑐 2 𝑏 𝑐 𝑎 𝑢 𝑏 𝑢 𝑢 𝑐 {\displaystyle{\displaystyle\int_{u}^{b}\sqrt{\frac{a-t}{(b-t)(t-c)^{3}}}% \mathrm{d}t=-\tfrac{2}{3}{(a-b)}{(b-u)}^{3/2}R_{D}+\frac{2}{b-c}\sqrt{\frac{(a% -u)(b-u)}{u-c}}}}
\int_{u}^{b}\sqrt{\frac{a-t}{(b-t)(t-c)^{3}}}\diff{t} = -\tfrac{2}{3}{(a-b)}{(b-u)}^{3/2}\CarlsonsymellintRD@@{(a-b)(u-c)}{(b-c)(a-u)}{(a-b)(b-c)}+\frac{2}{b-c}\sqrt{\frac{(a-u)(b-u)}{u-c}}
a > b , b > u , u > c formulae-sequence 𝑎 𝑏 formulae-sequence 𝑏 𝑢 𝑢 𝑐 {\displaystyle{\displaystyle a>b,b>u,u>c}}
Error
Integrate[Sqrt[Divide[a - t,(b - t)*(t - c)^(3)]], {t, u, b}, GenerateConditions->None] == -Divide[2,3]*(a - b)*(b - u)^(3/2)* 3*(EllipticF[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))]-EllipticE[ArcCos[Sqrt[(a - b)*(u - c)/(a - b)*(b - c)]],((a - b)*(b - c)-(b - c)*(a - u))/((a - b)*(b - c)-(a - b)*(u - c))])/(((a - b)*(b - c)-(b - c)*(a - u))*((a - b)*(b - c)-(a - b)*(u - c))^(1/2))+Divide[2,b - c]*Sqrt[Divide[(a - u)*(b - u),u - c]]
Missing Macro Error Aborted - Skipped - Because timed out
19.29.E11 I ( 𝐦 ) = y x α = 1 h ( a α + b α t ) - 1 / 2 j = 1 n ( a j + b j t ) m j d t 𝐼 𝐦 superscript subscript 𝑦 𝑥 superscript subscript product 𝛼 1 superscript subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑡 1 2 superscript subscript product 𝑗 1 𝑛 superscript subscript 𝑎 𝑗 subscript 𝑏 𝑗 𝑡 subscript 𝑚 𝑗 𝑡 {\displaystyle{\displaystyle I(\mathbf{m})=\int_{y}^{x}\prod_{\alpha=1}^{h}(a_% {\alpha}+b_{\alpha}t)^{-1/2}\prod_{j=1}^{n}(a_{j}+b_{j}t)^{m_{j}}\mathrm{d}t}}
I(\mathbf{m}) = \int_{y}^{x}\prod_{\alpha=1}^{h}(a_{\alpha}+b_{\alpha}t)^{-1/2}\prod_{j=1}^{n}(a_{j}+b_{j}t)^{m_{j}}\diff{t}

I(m) = int(product((a[alpha]+ b[alpha]*t)^(- 1/2)* product((a[j]+ b[j]*t)^(m[j]), j = 1..n), alpha = 1..h), t = y..x)
I[m] == Integrate[Product[(Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t)^(- 1/2)* Product[(Subscript[a, j]+ Subscript[b, j]*t)^(Subscript[m, j]), {j, 1, n}, GenerateConditions->None], {\[Alpha], 1, h}, GenerateConditions->None], {t, y, x}, GenerateConditions->None]
Aborted Aborted Error Skipped - Because timed out
19.29.E15 b j I ( 𝐞 l - 𝐞 j ) = d l j I ( - 𝐞 j ) + b l I ( 𝟎 ) subscript 𝑏 𝑗 𝐼 subscript 𝐞 𝑙 subscript 𝐞 𝑗 subscript 𝑑 𝑙 𝑗 𝐼 subscript 𝐞 𝑗 subscript 𝑏 𝑙 𝐼 0 {\displaystyle{\displaystyle b_{j}I(\mathbf{e}_{l}-\mathbf{e}_{j})=d_{lj}I(-% \mathbf{e}_{j})+b_{l}I(\boldsymbol{{0}})}}
b_{j}I(\mathbf{e}_{l}-\mathbf{e}_{j}) = d_{lj}I(-\mathbf{e}_{j})+b_{l}I(\boldsymbol{{0}})
j = 1 , l = 1 formulae-sequence 𝑗 1 𝑙 1 {\displaystyle{\displaystyle j=1,l=1}}
b[j]*I(e[l]- e[j]) = d[l, j]*I(- e[j])+ b[l]*I(0)
Subscript[b, j]*I[Subscript[e, l]- Subscript[e, j]] == Subscript[d, l, j]*I[- Subscript[e, j]]+ Subscript[b, l]*I[0]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E16 b β b γ I ( 𝐞 α ) = d α β d α γ I ( - 𝐞 α ) + 2 b α ( s ( x ) a α + b α x - s ( y ) a α + b α y ) subscript 𝑏 𝛽 subscript 𝑏 𝛾 𝐼 subscript 𝐞 𝛼 subscript 𝑑 𝛼 𝛽 subscript 𝑑 𝛼 𝛾 𝐼 subscript 𝐞 𝛼 2 subscript 𝑏 𝛼 𝑠 𝑥 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑥 𝑠 𝑦 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑦 {\displaystyle{\displaystyle b_{\beta}b_{\gamma}I(\mathbf{e}_{\alpha})=d_{% \alpha\beta}d_{\alpha\gamma}I(-\mathbf{e}_{\alpha})+2b_{\alpha}\left(\frac{s(x% )}{a_{\alpha}+b_{\alpha}x}-\frac{s(y)}{a_{\alpha}+b_{\alpha}y}\right)}}
b_{\beta}b_{\gamma}I(\mathbf{e}_{\alpha}) = d_{\alpha\beta}d_{\alpha\gamma}I(-\mathbf{e}_{\alpha})+2b_{\alpha}\left(\frac{s(x)}{a_{\alpha}+b_{\alpha}x}-\frac{s(y)}{a_{\alpha}+b_{\alpha}y}\right)

b[beta]*b[gamma]*I(e[alpha]) = d[alpha*beta]*d[alpha*gamma]*I(- e[alpha])+ 2*b[alpha]*((s(x))/(a[alpha]+ b[alpha]*x)-(s(y))/(a[alpha]+ b[alpha]*y))
Subscript[b, \[Beta]]*Subscript[b, \[Gamma]]*I[Subscript[e, \[Alpha]]] == Subscript[d, \[Alpha]*\[Beta]]*Subscript[d, \[Alpha]*\[Gamma]]*I[- Subscript[e, \[Alpha]]]+ 2*Subscript[b, \[Alpha]]*(Divide[s[x],Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*x]-Divide[s[y],Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*y])
Skipped - no semantic math Skipped - no semantic math - -
19.29.E17 s ( t ) = α = 1 3 a α + b α t 𝑠 𝑡 superscript subscript product 𝛼 1 3 subscript 𝑎 𝛼 subscript 𝑏 𝛼 𝑡 {\displaystyle{\displaystyle s(t)=\prod_{\alpha=1}^{3}\sqrt{a_{\alpha}+b_{% \alpha}t}}}
s(t) = \prod_{\alpha=1}^{3}\sqrt{a_{\alpha}+b_{\alpha}t}

s(t) = product(sqrt(a[alpha]+ b[alpha]*t), alpha = 1..3)
s[t] == Product[Sqrt[Subscript[a, \[Alpha]]+ Subscript[b, \[Alpha]]*t], {\[Alpha], 1, 3}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E18 b j q I ( q 𝐞 l ) = r = 0 q ( q r ) b l r d l j q - r I ( r 𝐞 j ) superscript subscript 𝑏 𝑗 𝑞 𝐼 𝑞 subscript 𝐞 𝑙 superscript subscript 𝑟 0 𝑞 binomial 𝑞 𝑟 superscript subscript 𝑏 𝑙 𝑟 superscript subscript 𝑑 𝑙 𝑗 𝑞 𝑟 𝐼 𝑟 subscript 𝐞 𝑗 {\displaystyle{\displaystyle b_{j}^{q}I(q\mathbf{e}_{l})=\sum_{r=0}^{q}% \genfrac{(}{)}{0.0pt}{}{q}{r}b_{l}^{r}d_{lj}^{q-r}I(r\mathbf{e}_{j})}}
b_{j}^{q}I(q\mathbf{e}_{l}) = \sum_{r=0}^{q}\binom{q}{r}b_{l}^{r}d_{lj}^{q-r}I(r\mathbf{e}_{j})
j = 1 , l = 1 formulae-sequence 𝑗 1 𝑙 1 {\displaystyle{\displaystyle j=1,l=1}}
(b[j])^(q)*I(q*e[l]) = sum(binomial(q,r)*(b[l])^(r)*(d[l, j])^(q - r)*I(r*e[j]), r = 0..q)
(Subscript[b, j])^(q)*I[q*Subscript[e, l]] == Sum[Binomial[q,r]*(Subscript[b, l])^(r)*(Subscript[d, l, j])^(q - r)*I[r*Subscript[e, j]], {r, 0, q}, GenerateConditions->None]
Failure Failure Error Skipped - Because timed out
19.29.E19 y x d t Q 1 ( t ) Q 2 ( t ) = R F ( U 2 + a 1 b 2 , U 2 + a 2 b 1 , U 2 ) superscript subscript 𝑦 𝑥 𝑡 subscript 𝑄 1 𝑡 subscript 𝑄 2 𝑡 Carlson-integral-RF superscript 𝑈 2 subscript 𝑎 1 subscript 𝑏 2 superscript 𝑈 2 subscript 𝑎 2 subscript 𝑏 1 superscript 𝑈 2 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{Q_{1}(t)Q_{2}% (t)}}=R_{F}\left(U^{2}+a_{1}b_{2},U^{2}+a_{2}b_{1},U^{2}\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \CarlsonsymellintRF@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}

int((1)/(sqrt(Q[1](t)* Q[2](t))), t = y..x) = 0.5*int(1/(sqrt(t+(U)^(2)+ a[1]*b[2])*sqrt(t+(U)^(2)+ a[2]*b[1])*sqrt(t+(U)^(2))), t = 0..infinity)
Integrate[Divide[1,Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]/Sqrt[(U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]]
Aborted Aborted Manual Skip! Skipped - Because timed out
19.29.E20 y x t 2 d t Q 1 ( t ) Q 2 ( t ) = 1 3 a 1 a 2 R D ( U 2 + a 1 b 2 , U 2 + a 2 b 1 , U 2 ) + ( x y / U ) superscript subscript 𝑦 𝑥 superscript 𝑡 2 𝑡 subscript 𝑄 1 𝑡 subscript 𝑄 2 𝑡 1 3 subscript 𝑎 1 subscript 𝑎 2 Carlson-integral-RD superscript 𝑈 2 subscript 𝑎 1 subscript 𝑏 2 superscript 𝑈 2 subscript 𝑎 2 subscript 𝑏 1 superscript 𝑈 2 𝑥 𝑦 𝑈 {\displaystyle{\displaystyle\int_{y}^{x}\frac{t^{2}\mathrm{d}t}{\sqrt{Q_{1}(t)% Q_{2}(t)}}=\tfrac{1}{3}a_{1}a_{2}R_{D}\left(U^{2}+a_{1}b_{2},U^{2}+a_{2}b_{1},% U^{2}\right)+(xy/U)}}
\int_{y}^{x}\frac{t^{2}\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}a_{1}a_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xy/U)

Error
Integrate[Divide[(t)^(2),Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[a, 1]*Subscript[a, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y/U)
Missing Macro Error Aborted - Skipped - Because timed out
19.29.E21 y x d t t 2 Q 1 ( t ) Q 2 ( t ) = 1 3 b 1 b 2 R D ( U 2 + a 1 b 2 , U 2 + a 2 b 1 , U 2 ) + ( x y U ) - 1 superscript subscript 𝑦 𝑥 𝑡 superscript 𝑡 2 subscript 𝑄 1 𝑡 subscript 𝑄 2 𝑡 1 3 subscript 𝑏 1 subscript 𝑏 2 Carlson-integral-RD superscript 𝑈 2 subscript 𝑎 1 subscript 𝑏 2 superscript 𝑈 2 subscript 𝑎 2 subscript 𝑏 1 superscript 𝑈 2 superscript 𝑥 𝑦 𝑈 1 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{t^{2}\sqrt{Q_{1}(t)% Q_{2}(t)}}=\tfrac{1}{3}b_{1}b_{2}R_{D}\left(U^{2}+a_{1}b_{2},U^{2}+a_{2}b_{1},% U^{2}\right)+(xyU)^{-1}}}
\int_{y}^{x}\frac{\diff{t}}{t^{2}\sqrt{Q_{1}(t)Q_{2}(t)}} = \tfrac{1}{3}b_{1}b_{2}\CarlsonsymellintRD@{U^{2}+a_{1}b_{2}}{U^{2}+a_{2}b_{1}}{U^{2}}+(xyU)^{-1}

Error
Integrate[Divide[1,(t)^(2)*Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == Divide[1,3]*Subscript[b, 1]*Subscript[b, 2]*3*(EllipticF[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])]-EllipticE[ArcCos[Sqrt[(U)^(2)+ Subscript[a, 1]*Subscript[b, 2]/(U)^(2)]],((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])/((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])])/(((U)^(2)-(U)^(2)+ Subscript[a, 2]*Subscript[b, 1])*((U)^(2)-(U)^(2)+ Subscript[a, 1]*Subscript[b, 2])^(1/2))+(x*y*U)^(- 1)
Missing Macro Error Aborted - Skipped - Because timed out
19.29.E22 ( x 2 - y 2 ) U = x Q 1 ( y ) Q 2 ( y ) + y Q 1 ( x ) Q 2 ( x ) superscript 𝑥 2 superscript 𝑦 2 𝑈 𝑥 subscript 𝑄 1 𝑦 subscript 𝑄 2 𝑦 𝑦 subscript 𝑄 1 𝑥 subscript 𝑄 2 𝑥 {\displaystyle{\displaystyle(x^{2}-y^{2})U=x\sqrt{Q_{1}(y)Q_{2}(y)}+y\sqrt{Q_{% 1}(x)Q_{2}(x)}}}
(x^{2}-y^{2})U = x\sqrt{Q_{1}(y)Q_{2}(y)}+y\sqrt{Q_{1}(x)Q_{2}(x)}

((x)^(2)- (y)^(2))*U = x*sqrt(Q[1](y)* Q[2](y))+ y*sqrt(Q[1](x)* Q[2](x))
((x)^(2)- (y)^(2))*U == x*Sqrt[Subscript[Q, 1][y]* Subscript[Q, 2][y]]+ y*Sqrt[Subscript[Q, 1][x]* Subscript[Q, 2][x]]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E23 y d t ( t 2 + a 2 ) ( t 2 - b 2 ) = R F ( y 2 + a 2 , y 2 - b 2 , y 2 ) superscript subscript 𝑦 𝑡 superscript 𝑡 2 superscript 𝑎 2 superscript 𝑡 2 superscript 𝑏 2 Carlson-integral-RF superscript 𝑦 2 superscript 𝑎 2 superscript 𝑦 2 superscript 𝑏 2 superscript 𝑦 2 {\displaystyle{\displaystyle\int_{y}^{\infty}\frac{\mathrm{d}t}{\sqrt{(t^{2}+a% ^{2})(t^{2}-b^{2})}}=R_{F}\left(y^{2}+a^{2},y^{2}-b^{2},y^{2}\right)}}
\int_{y}^{\infty}\frac{\diff{t}}{\sqrt{(t^{2}+a^{2})(t^{2}-b^{2})}} = \CarlsonsymellintRF@{y^{2}+a^{2}}{y^{2}-b^{2}}{y^{2}}

int((1)/(sqrt(((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2)))), t = y..infinity) = 0.5*int(1/(sqrt(t+(y)^(2)+ (a)^(2))*sqrt(t+(y)^(2)- (b)^(2))*sqrt(t+(y)^(2))), t = 0..infinity)
Integrate[Divide[1,Sqrt[((t)^(2)+ (a)^(2))*((t)^(2)- (b)^(2))]], {t, y, Infinity}, GenerateConditions->None] == EllipticF[ArcCos[Sqrt[(y)^(2)+ (a)^(2)/(y)^(2)]],((y)^(2)-(y)^(2)- (b)^(2))/((y)^(2)-(y)^(2)+ (a)^(2))]/Sqrt[(y)^(2)-(y)^(2)+ (a)^(2)]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29.E24 y x d t Q 1 ( t ) Q 2 ( t ) = 4 R F ( U , U + D 12 + V , U + D 12 - V ) superscript subscript 𝑦 𝑥 𝑡 subscript 𝑄 1 𝑡 subscript 𝑄 2 𝑡 4 Carlson-integral-RF 𝑈 𝑈 subscript 𝐷 12 𝑉 𝑈 subscript 𝐷 12 𝑉 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{Q_{1}(t)Q_{2}% (t)}}=4R_{F}\left(U,U+D_{12}+V,U+D_{12}-V\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{Q_{1}(t)Q_{2}(t)}} = 4\CarlsonsymellintRF@{U}{U+D_{12}+V}{U+D_{12}-V}

int((1)/(sqrt(Q[1](t)* Q[2](t))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U + D[12]+ V)*sqrt(t+U + D[12]- V)), t = 0..infinity)
Integrate[Divide[1,Sqrt[Subscript[Q, 1][t]* Subscript[Q, 2][t]]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U + Subscript[D, 12]- V]],(U + Subscript[D, 12]- V-U + Subscript[D, 12]+ V)/(U + Subscript[D, 12]- V-U)]/Sqrt[U + Subscript[D, 12]- V-U]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex17 ( x - y ) 2 U = S 1 S 2 superscript 𝑥 𝑦 2 𝑈 subscript 𝑆 1 subscript 𝑆 2 {\displaystyle{\displaystyle(x-y)^{2}U=S_{1}S_{2}}}
(x-y)^{2}U = S_{1}S_{2}

(x - y)^(2)* U = S[1]*S[2]
(x - y)^(2)* U == Subscript[S, 1]*Subscript[S, 2]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex18 S j = ( Q j ( x ) + Q j ( y ) ) 2 - h j ( x - y ) 2 subscript 𝑆 𝑗 superscript subscript 𝑄 𝑗 𝑥 subscript 𝑄 𝑗 𝑦 2 subscript 𝑗 superscript 𝑥 𝑦 2 {\displaystyle{\displaystyle S_{j}=\left(\sqrt{Q_{j}(x)}+\sqrt{Q_{j}(y)}\right% )^{2}-h_{j}(x-y)^{2}}}
S_{j} = \left(\sqrt{Q_{j}(x)}+\sqrt{Q_{j}(y)}\right)^{2}-h_{j}(x-y)^{2}

S[j] = (sqrt(Q[j](x))+sqrt(Q[j](y)))^(2)- h[j]*(x - y)^(2)
Subscript[S, j] == (Sqrt[Subscript[Q, j][x]]+Sqrt[Subscript[Q, j][y]])^(2)- Subscript[h, j]*(x - y)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex19 D j l = 2 f j h l + 2 h j f l - g j g l subscript 𝐷 𝑗 𝑙 2 subscript 𝑓 𝑗 subscript 𝑙 2 subscript 𝑗 subscript 𝑓 𝑙 subscript 𝑔 𝑗 subscript 𝑔 𝑙 {\displaystyle{\displaystyle D_{jl}=2f_{j}h_{l}+2h_{j}f_{l}-g_{j}g_{l}}}
D_{jl} = 2f_{j}h_{l}+2h_{j}f_{l}-g_{j}g_{l}

D[j, l] = 2*f[j]*h[l]+ 2*h[j]*f[l]- g[j]*g[l]
Subscript[D, j, l] == 2*Subscript[f, j]*Subscript[h, l]+ 2*Subscript[h, j]*Subscript[f, l]- Subscript[g, j]*Subscript[g, l]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex20 V = D 12 2 - D 11 D 22 𝑉 superscript subscript 𝐷 12 2 subscript 𝐷 11 subscript 𝐷 22 {\displaystyle{\displaystyle V=\sqrt{D_{12}^{2}-D_{11}D_{22}}}}
V = \sqrt{D_{12}^{2}-D_{11}D_{22}}

V = sqrt((D[12])^(2)- D[11]*D[22])
V == Sqrt[(Subscript[D, 12])^(2)- Subscript[D, 11]*Subscript[D, 22]]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex21 S 1 = ( X 1 Y 2 + Y 1 X 2 ) 2 subscript 𝑆 1 superscript subscript 𝑋 1 subscript 𝑌 2 subscript 𝑌 1 subscript 𝑋 2 2 {\displaystyle{\displaystyle S_{1}=(X_{1}Y_{2}+Y_{1}X_{2})^{2}}}
S_{1} = (X_{1}Y_{2}+Y_{1}X_{2})^{2}

S[1] = (X[1]*Y[2]+ Y[1]*X[2])^(2)
Subscript[S, 1] == (Subscript[X, 1]*Subscript[Y, 2]+ Subscript[Y, 1]*Subscript[X, 2])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex22 X j = a j + b j x subscript 𝑋 𝑗 subscript 𝑎 𝑗 subscript 𝑏 𝑗 𝑥 {\displaystyle{\displaystyle X_{j}=\sqrt{a_{j}+b_{j}x}}}
X_{j} = \sqrt{a_{j}+b_{j}x}

X[j] = sqrt(a[j]+ b[j]*x)
Subscript[X, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*x]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex23 Y j = a j + b j y subscript 𝑌 𝑗 subscript 𝑎 𝑗 subscript 𝑏 𝑗 𝑦 {\displaystyle{\displaystyle Y_{j}=\sqrt{a_{j}+b_{j}y}}}
Y_{j} = \sqrt{a_{j}+b_{j}y}

Y[j] = sqrt(a[j]+ b[j]*y)
Subscript[Y, j] == Sqrt[Subscript[a, j]+ Subscript[b, j]*y]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex24 D 12 = 2 a 1 a 2 h 2 + 2 b 1 b 2 f 2 - ( a 1 b 2 + a 2 b 1 ) g 2 subscript 𝐷 12 2 subscript 𝑎 1 subscript 𝑎 2 subscript 2 2 subscript 𝑏 1 subscript 𝑏 2 subscript 𝑓 2 subscript 𝑎 1 subscript 𝑏 2 subscript 𝑎 2 subscript 𝑏 1 subscript 𝑔 2 {\displaystyle{\displaystyle D_{12}=2a_{1}a_{2}h_{2}+2b_{1}b_{2}f_{2}-(a_{1}b_% {2}+a_{2}b_{1})g_{2}}}
D_{12} = 2a_{1}a_{2}h_{2}+2b_{1}b_{2}f_{2}-(a_{1}b_{2}+a_{2}b_{1})g_{2}

D[12] = 2*a[1]*a[2]*h[2]+ 2*b[1]*b[2]*f[2]-(a[1]*b[2]+ a[2]*b[1])*g[2]
Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[a, 2]*Subscript[h, 2]+ 2*Subscript[b, 1]*Subscript[b, 2]*Subscript[f, 2]-(Subscript[a, 1]*Subscript[b, 2]+ Subscript[a, 2]*Subscript[b, 1])*Subscript[g, 2]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex25 D 11 = - ( a 1 b 2 - a 2 b 1 ) 2 subscript 𝐷 11 superscript subscript 𝑎 1 subscript 𝑏 2 subscript 𝑎 2 subscript 𝑏 1 2 {\displaystyle{\displaystyle D_{11}=-(a_{1}b_{2}-a_{2}b_{1})^{2}}}
D_{11} = -(a_{1}b_{2}-a_{2}b_{1})^{2}

D[11] = -(a[1]*b[2]- a[2]*b[1])^(2)
Subscript[D, 11] == -(Subscript[a, 1]*Subscript[b, 2]- Subscript[a, 2]*Subscript[b, 1])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex26 S 1 = ( X 1 + Y 1 ) 2 subscript 𝑆 1 superscript subscript 𝑋 1 subscript 𝑌 1 2 {\displaystyle{\displaystyle S_{1}=(X_{1}+Y_{1})^{2}}}
S_{1} = (X_{1}+Y_{1})^{2}

S[1] = (X[1]+ Y[1])^(2)
Subscript[S, 1] == (Subscript[X, 1]+ Subscript[Y, 1])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex27 D 12 = 2 a 1 h 2 - b 1 g 2 subscript 𝐷 12 2 subscript 𝑎 1 subscript 2 subscript 𝑏 1 subscript 𝑔 2 {\displaystyle{\displaystyle D_{12}=2a_{1}h_{2}-b_{1}g_{2}}}
D_{12} = 2a_{1}h_{2}-b_{1}g_{2}

D[12] = 2*a[1]*h[2]- b[1]*g[2]
Subscript[D, 12] == 2*Subscript[a, 1]*Subscript[h, 2]- Subscript[b, 1]*Subscript[g, 2]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex28 D 11 = - b 1 2 subscript 𝐷 11 superscript subscript 𝑏 1 2 {\displaystyle{\displaystyle D_{11}=-b_{1}^{2}}}
D_{11} = -b_{1}^{2}

D[11] = - (b[1])^(2)
Subscript[D, 11] == - (Subscript[b, 1])^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29.E28 y x d t t 3 - a 3 = 4 R F ( U , U - 3 a + 2 3 a , U - 3 a - 2 3 a ) superscript subscript 𝑦 𝑥 𝑡 superscript 𝑡 3 superscript 𝑎 3 4 Carlson-integral-RF 𝑈 𝑈 3 𝑎 2 3 𝑎 𝑈 3 𝑎 2 3 𝑎 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{t^{3}-a^{3}}}% =4R_{F}\left(U,U-3a+2\sqrt{3}a,U-3a-2\sqrt{3}a\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{3}-a^{3}}} = 4\CarlsonsymellintRF@{U}{U-3a+2\sqrt{3}a}{U-3a-2\sqrt{3}a}

int((1)/(sqrt((t)^(3)- (a)^(3))), t = y..x) = 4*0.5*int(1/(sqrt(t+U)*sqrt(t+U - 3*a + 2*sqrt(3)*a)*sqrt(t+U - 3*a - 2*sqrt(3)*a)), t = 0..infinity)
Integrate[Divide[1,Sqrt[(t)^(3)- (a)^(3)]], {t, y, x}, GenerateConditions->None] == 4*EllipticF[ArcCos[Sqrt[U/U - 3*a - 2*Sqrt[3]*a]],(U - 3*a - 2*Sqrt[3]*a-U - 3*a + 2*Sqrt[3]*a)/(U - 3*a - 2*Sqrt[3]*a-U)]/Sqrt[U - 3*a - 2*Sqrt[3]*a-U]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29#Ex29 ( x - y ) 2 U = ( x - a + y - a ) 2 ( ( ξ + η ) 2 - ( x - y ) 2 ) superscript 𝑥 𝑦 2 𝑈 superscript 𝑥 𝑎 𝑦 𝑎 2 superscript 𝜉 𝜂 2 superscript 𝑥 𝑦 2 {\displaystyle{\displaystyle(x-y)^{2}U=(\sqrt{x-a}+\sqrt{y-a})^{2}\left((\xi+% \eta)^{2}-(x-y)^{2}\right)}}
(x-y)^{2}U = (\sqrt{x-a}+\sqrt{y-a})^{2}\left((\xi+\eta)^{2}-(x-y)^{2}\right)

(x - y)^(2)* U = (sqrt(x - a)+sqrt(y - a))^(2)*((xi + eta)^(2)-(x - y)^(2))
(x - y)^(2)* U == (Sqrt[x - a]+Sqrt[y - a])^(2)*((\[Xi]+ \[Eta])^(2)-(x - y)^(2))
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex30 ξ = x 2 + a x + a 2 𝜉 superscript 𝑥 2 𝑎 𝑥 superscript 𝑎 2 {\displaystyle{\displaystyle\xi=\sqrt{x^{2}+ax+a^{2}}}}
\xi = \sqrt{x^{2}+ax+a^{2}}

xi = sqrt((x)^(2)+ a*x + (a)^(2))
\[Xi] == Sqrt[(x)^(2)+ a*x + (a)^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.29#Ex31 η = y 2 + a y + a 2 𝜂 superscript 𝑦 2 𝑎 𝑦 superscript 𝑎 2 {\displaystyle{\displaystyle\eta=\sqrt{y^{2}+ay+a^{2}}}}
\eta = \sqrt{y^{2}+ay+a^{2}}

eta = sqrt((y)^(2)+ a*y + (a)^(2))
\[Eta] == Sqrt[(y)^(2)+ a*y + (a)^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.29.E30 y x d t Q ( t 2 ) = 2 R F ( U , U - g + 2 f h , U - g - 2 f h ) superscript subscript 𝑦 𝑥 𝑡 𝑄 superscript 𝑡 2 2 Carlson-integral-RF 𝑈 𝑈 𝑔 2 𝑓 𝑈 𝑔 2 𝑓 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{Q(t^{2})}}=2R% _{F}\left(U,U-g+2\sqrt{fh},U-g-2\sqrt{fh}\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{Q(t^{2})}} = 2\CarlsonsymellintRF@{U}{U-g+2\sqrt{fh}}{U-g-2\sqrt{fh}}

int((1)/(sqrt(Q((t)^(2)))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U - g + 2*sqrt(f*h))*sqrt(t+U - g - 2*sqrt(f*h))), t = 0..infinity)
Integrate[Divide[1,Sqrt[Q[(t)^(2)]]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - g - 2*Sqrt[f*h]]],(U - g - 2*Sqrt[f*h]-U - g + 2*Sqrt[f*h])/(U - g - 2*Sqrt[f*h]-U)]/Sqrt[U - g - 2*Sqrt[f*h]-U]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.29.E31 ( x - y ) 2 U = ( Q ( x 2 ) + Q ( y 2 ) ) 2 - h ( x 2 - y 2 ) 2 superscript 𝑥 𝑦 2 𝑈 superscript 𝑄 superscript 𝑥 2 𝑄 superscript 𝑦 2 2 superscript superscript 𝑥 2 superscript 𝑦 2 2 {\displaystyle{\displaystyle(x-y)^{2}U=\left(\sqrt{Q(x^{2})}+\sqrt{Q(y^{2})}% \right)^{2}-h(x^{2}-y^{2})^{2}}}
(x-y)^{2}U = \left(\sqrt{Q(x^{2})}+\sqrt{Q(y^{2})}\right)^{2}-h(x^{2}-y^{2})^{2}

(x - y)^(2)* U = (sqrt(Q((x)^(2)))+sqrt(Q((y)^(2))))^(2)- h*((x)^(2)- (y)^(2))^(2)
(x - y)^(2)* U == (Sqrt[Q[(x)^(2)]]+Sqrt[Q[(y)^(2)]])^(2)- h*((x)^(2)- (y)^(2))^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.29.E32 y x d t t 4 + a 4 = 2 R F ( U , U + 2 a 2 , U - 2 a 2 ) superscript subscript 𝑦 𝑥 𝑡 superscript 𝑡 4 superscript 𝑎 4 2 Carlson-integral-RF 𝑈 𝑈 2 superscript 𝑎 2 𝑈 2 superscript 𝑎 2 {\displaystyle{\displaystyle\int_{y}^{x}\frac{\mathrm{d}t}{\sqrt{t^{4}+a^{4}}}% =2R_{F}\left(U,U+2a^{2},U-2a^{2}\right)}}
\int_{y}^{x}\frac{\diff{t}}{\sqrt{t^{4}+a^{4}}} = 2\CarlsonsymellintRF@{U}{U+2a^{2}}{U-2a^{2}}

int((1)/(sqrt((t)^(4)+ (a)^(4))), t = y..x) = 2*0.5*int(1/(sqrt(t+U)*sqrt(t+U + 2*(a)^(2))*sqrt(t+U - 2*(a)^(2))), t = 0..infinity)
Integrate[Divide[1,Sqrt[(t)^(4)+ (a)^(4)]], {t, y, x}, GenerateConditions->None] == 2*EllipticF[ArcCos[Sqrt[U/U - 2*(a)^(2)]],(U - 2*(a)^(2)-U + 2*(a)^(2))/(U - 2*(a)^(2)-U)]/Sqrt[U - 2*(a)^(2)-U]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[0.06910876495694751, 1.480960979386122]
Test Values: {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[1.3051585498245286, 1.480960979386122]
Test Values: {Rule[a, -1.5], Rule[U, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
19.29.E33 ( x - y ) 2 U = ( x 4 + a 4 + y 4 + a 4 ) 2 - ( x 2 - y 2 ) 2 superscript 𝑥 𝑦 2 𝑈 superscript superscript 𝑥 4 superscript 𝑎 4 superscript 𝑦 4 superscript 𝑎 4 2 superscript superscript 𝑥 2 superscript 𝑦 2 2 {\displaystyle{\displaystyle(x-y)^{2}U=\left(\sqrt{x^{4}+a^{4}}+\sqrt{y^{4}+a^% {4}}\right)^{2}-(x^{2}-y^{2})^{2}}}
(x-y)^{2}U = \left(\sqrt{x^{4}+a^{4}}+\sqrt{y^{4}+a^{4}}\right)^{2}-(x^{2}-y^{2})^{2}

(x - y)^(2)* U = (sqrt((x)^(4)+ (a)^(4))+sqrt((y)^(4)+ (a)^(4)))^(2)-((x)^(2)- (y)^(2))^(2)
(x - y)^(2)* U == (Sqrt[(x)^(4)+ (a)^(4)]+Sqrt[(y)^(4)+ (a)^(4)])^(2)-((x)^(2)- (y)^(2))^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex1 x = a sin ϕ 𝑥 𝑎 italic-ϕ {\displaystyle{\displaystyle x=a\sin\phi}}
x = a\sin@@{\phi}

x = a*sin(phi)
x == a*Sin[\[Phi]]
Failure Failure
Failed [180 / 180]
Result: 2.788470502+.5063946946*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 3/2}

Result: 1.788470502+.5063946946*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, x = 1/2}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[2.1491827752870476, 0.34394646701016035]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.093555858156998, 0.6491787480429551]
Test Values: {Rule[a, -1.5], Rule[x, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.30#Ex2 y = b cos ϕ 𝑦 𝑏 italic-ϕ {\displaystyle{\displaystyle y=b\cos\phi}}
y = b\cos@@{\phi}
0 ϕ , ϕ 2 π formulae-sequence 0 italic-ϕ italic-ϕ 2 𝜋 {\displaystyle{\displaystyle 0\leq\phi,\phi\leq 2\pi}}
y = b*cos(phi)
y == b*Cos[\[Phi]]
Failure Failure
Failed [108 / 108]
Result: -1.393894198
Test Values: {b = -3/2, phi = 3/2, y = -3/2}

Result: 1.606105802
Test Values: {b = -3/2, phi = 3/2, y = 3/2}

... skip entries to safe data
Failed [108 / 108]
Result: -1.3938941974984456
Test Values: {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 1.5]}

Result: -0.18362615716444086
Test Values: {Rule[b, -1.5], Rule[y, -1.5], Rule[ϕ, 0.5]}

... skip entries to safe data
19.30.E2 s = a 0 ϕ 1 - k 2 sin 2 θ d θ 𝑠 𝑎 superscript subscript 0 italic-ϕ 1 superscript 𝑘 2 2 𝜃 𝜃 {\displaystyle{\displaystyle s=a\int_{0}^{\phi}\sqrt{1-k^{2}{\sin^{2}}\theta}% \mathrm{d}\theta}}
s = a\int_{0}^{\phi}\sqrt{1-k^{2}\sin^{2}@@{\theta}}\diff{\theta}

s = a*int(sqrt(1 - (k)^(2)* (sin(theta))^(2)), theta = 0..phi)
s == a*Integrate[Sqrt[1 - (k)^(2)* (Sin[\[Theta]])^(2)], {\[Theta], 0, \[Phi]}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.30.E3 s / a = E ( ϕ , k ) 𝑠 𝑎 elliptic-integral-second-kind-E italic-ϕ 𝑘 {\displaystyle{\displaystyle s/a=E\left(\phi,k\right)}}
s/a = \incellintEk@{\phi}{k}

s/a = EllipticE(sin(phi), k)
s/a == EllipticE[\[Phi], (k)^2]
Failure Failure
Failed [300 / 300]
Result: .1410196655-.3375964631*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 1}

Result: -.36391978e-1+.5433649104e-1*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.5672114831419685, -0.22929764467344024]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.5579190406370536, -0.16535187593702125]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.30.E3 E ( ϕ , k ) = R F ( c - 1 , c - k 2 , c ) - 1 3 k 2 R D ( c - 1 , c - k 2 , c ) elliptic-integral-second-kind-E italic-ϕ 𝑘 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 1 3 superscript 𝑘 2 Carlson-integral-RD 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle E\left(\phi,k\right)={R_{F}\left(c-1,c-k^{2},c% \right)-\tfrac{1}{3}k^{2}R_{D}\left(c-1,c-k^{2},c\right)}}}
\incellintEk@{\phi}{k} = {\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}-\tfrac{1}{3}k^{2}\CarlsonsymellintRD@{c-1}{c-k^{2}}{c}}

Error
EllipticE[\[Phi], (k)^2] == EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]-Divide[1,3]*(k)^(2)* 3*(EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]-EllipticE[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)])/((c-c - (k)^(2))*(c-c - 1)^(1/2))
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [180 / 180]
Result: Complex[3.5743811704478246, 0.7698502565730785]
Test Values: {Rule[c, -1.5], Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[3.9424508382496875, -1.017653751864599]
Test Values: {Rule[c, -1.5], Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.30#Ex3 k 2 = 1 - ( b 2 / a 2 ) superscript 𝑘 2 1 superscript 𝑏 2 superscript 𝑎 2 {\displaystyle{\displaystyle k^{2}=1-(b^{2}/a^{2})}}
k^{2} = 1-(b^{2}/a^{2})

(k)^(2) = 1 -((b)^(2)/(a)^(2))
(k)^(2) == 1 -((b)^(2)/(a)^(2))
Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex4 c = csc 2 ϕ 𝑐 2 italic-ϕ {\displaystyle{\displaystyle c={\csc^{2}}\phi}}
c = \csc^{2}@@{\phi}

c = (csc(phi))^(2)
c == (Csc[\[Phi]])^(2)
Failure Failure
Failed [60 / 60]
Result: -2.359812877+.7993130071*I
Test Values: {c = -3/2, phi = 1/2*3^(1/2)+1/2*I}

Result: -1.296085040-.8173084059*I
Test Values: {c = -3/2, phi = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [60 / 60]
Result: Complex[-3.841312467237177, 3.4490957612740374]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.17530792640393877, -3.4502399957777015]
Test Values: {Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.30.E5 L ( a , b ) = 4 a E ( k ) 𝐿 𝑎 𝑏 4 𝑎 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle L(a,b)=4aE\left(k\right)}}
L(a,b) = 4a\compellintEk@{k}

L(a , b) = 4*a*EllipticE(k)
L[a , b] == 4*a*EllipticE[(k)^2]
Failure Failure
Failed [300 / 300]
Result: (.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+6.000000000
Test Values: {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 1}

Result: (.8660254040+.5000000000*I)*(-1.500000000, -1.500000000)+2.437793319+8.063125386*I
Test Values: {L = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, k = 2}

... skip entries to safe data
Error
19.30.E5 4 a E ( k ) = 8 a R G ( 0 , b 2 / a 2 , 1 ) 4 𝑎 complete-elliptic-integral-second-kind-E 𝑘 8 𝑎 Carlson-integral-RG 0 superscript 𝑏 2 superscript 𝑎 2 1 {\displaystyle{\displaystyle 4aE\left(k\right)=8aR_{G}\left(0,b^{2}/a^{2},1% \right)}}
4a\compellintEk@{k} = 8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1}

Error
4*a*EllipticE[(k)^2] == 8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [108 / 108]
Result: 12.849555921538759
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1]}

Result: Complex[16.411762602778996, -8.063125388322588]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 2]}

... skip entries to safe data
19.30.E5 8 a R G ( 0 , b 2 / a 2 , 1 ) = 8 R G ( 0 , a 2 , b 2 ) 8 𝑎 Carlson-integral-RG 0 superscript 𝑏 2 superscript 𝑎 2 1 8 Carlson-integral-RG 0 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle 8aR_{G}\left(0,b^{2}/a^{2},1\right)=8R_{G}\left(0% ,a^{2},b^{2}\right)}}
8a\CarlsonsymellintRG@{0}{b^{2}/a^{2}}{1} = 8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}}

Error
8*a*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-(b)^(2)/(a)^(2))/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2]) == 8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2])
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [18 / 36]
Result: -37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, -1.5]}

Result: -37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, 1.5]}

... skip entries to safe data
19.30.E5 8 R G ( 0 , a 2 , b 2 ) = 8 a b R G ( 0 , a - 2 , b - 2 ) 8 Carlson-integral-RG 0 superscript 𝑎 2 superscript 𝑏 2 8 𝑎 𝑏 Carlson-integral-RG 0 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle 8R_{G}\left(0,a^{2},b^{2}\right)=8abR_{G}\left(0,% a^{-2},b^{-2}\right)}}
8\CarlsonsymellintRG@{0}{a^{2}}{b^{2}} = 8ab\CarlsonsymellintRG@{0}{a^{-2}}{b^{-2}}

Error
8*Sqrt[(b)^(2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(2)]],((b)^(2)-(a)^(2))/((b)^(2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(2)]]]^2]) == 8*a*b*Sqrt[(b)^(- 2)-0]*(EllipticE[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+(Cot[ArcCos[Sqrt[0/(b)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[0/(b)^(- 2)]],((b)^(- 2)-(a)^(- 2))/((b)^(- 2)-0)]+Cot[ArcCos[Sqrt[0/(b)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/(b)^(- 2)]]]^2])
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [18 / 36]
Result: 37.69911184307752
Test Values: {Rule[a, -1.5], Rule[b, 1.5]}

Result: 26.729786441110512
Test Values: {Rule[a, -1.5], Rule[b, 0.5]}

... skip entries to safe data
19.30.E6 s ( 1 / k ) = a 2 - b 2 F ( ϕ , k ) partial-derivative 𝑠 1 𝑘 superscript 𝑎 2 superscript 𝑏 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\frac{\partial s}{\partial(1/k)}=\sqrt{a^{2}-b^{2}% }F\left(\phi,k\right)}}
\pderiv{s}{(1/k)} = \sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k}
k 2 = ( a 2 - b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ formulae-sequence superscript 𝑘 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑎 2 𝜆 𝑐 2 italic-ϕ {\displaystyle{\displaystyle k^{2}=(a^{2}-b^{2})/(a^{2}+\lambda),c={\csc^{2}}% \phi}}
subs( temp=(1/k), diff( s, temp$(1) ) ) = sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k)
(D[s, {temp, 1}]/.temp-> (1/k)) == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2]
Failure Failure Successful [Tested: 300]
Failed [20 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, -2]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[k, 1], Rule[s, -1.5], Rule[ϕ, 2]}

... skip entries to safe data
19.30.E6 a 2 - b 2 F ( ϕ , k ) = a 2 - b 2 R F ( c - 1 , c - k 2 , c ) superscript 𝑎 2 superscript 𝑏 2 elliptic-integral-first-kind-F italic-ϕ 𝑘 superscript 𝑎 2 superscript 𝑏 2 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle\sqrt{a^{2}-b^{2}}F\left(\phi,k\right)=\sqrt{a^{2}% -b^{2}}R_{F}\left(c-1,c-k^{2},c\right)}}
\sqrt{a^{2}-b^{2}}\incellintFk@{\phi}{k} = \sqrt{a^{2}-b^{2}}\CarlsonsymellintRF@{c-1}{c-k^{2}}{c}
k 2 = ( a 2 - b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ formulae-sequence superscript 𝑘 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑎 2 𝜆 𝑐 2 italic-ϕ {\displaystyle{\displaystyle k^{2}=(a^{2}-b^{2})/(a^{2}+\lambda),c={\csc^{2}}% \phi}}
sqrt((a)^(2)- (b)^(2))*EllipticF(sin(phi), k) = sqrt((a)^(2)- (b)^(2))*0.5*int(1/(sqrt(t+c - 1)*sqrt(t+c - (k)^(2))*sqrt(t+c)), t = 0..infinity)
Sqrt[(a)^(2)- (b)^(2)]*EllipticF[\[Phi], (k)^2] == Sqrt[(a)^(2)- (b)^(2)]*EllipticF[ArcCos[Sqrt[c - 1/c]],(c-c - (k)^(2))/(c-c - 1)]/Sqrt[c-c - 1]
Error Failure Skip - symbolical successful subtest Skip - No test values generated
19.30#Ex5 x = a t + 1 𝑥 𝑎 𝑡 1 {\displaystyle{\displaystyle x=a\sqrt{t+1}}}
x = a\sqrt{t+1}

x = a*sqrt(t + 1)
x == a*Sqrt[t + 1]
Skipped - no semantic math Skipped - no semantic math - -
19.30#Ex6 y = b t 𝑦 𝑏 𝑡 {\displaystyle{\displaystyle y=b\sqrt{t}}}
y = b\sqrt{t}

y = b*sqrt(t)
y == b*Sqrt[t]
Skipped - no semantic math Skipped - no semantic math - -
19.30.E8 s = 1 2 0 y 2 / b 2 ( a 2 + b 2 ) t + b 2 t ( t + 1 ) d t 𝑠 1 2 superscript subscript 0 superscript 𝑦 2 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑏 2 𝑡 superscript 𝑏 2 𝑡 𝑡 1 𝑡 {\displaystyle{\displaystyle s=\frac{1}{2}\int_{0}^{y^{2}/b^{2}}\sqrt{\frac{(a% ^{2}+b^{2})t+b^{2}}{t(t+1)}}\mathrm{d}t}}
s = \frac{1}{2}\int_{0}^{y^{2}/b^{2}}\sqrt{\frac{(a^{2}+b^{2})t+b^{2}}{t(t+1)}}\diff{t}

s = (1)/(2)*int(sqrt((((a)^(2)+ (b)^(2))*t + (b)^(2))/(t*(t + 1))), t = 0..(y)^(2)/(b)^(2))
s == Divide[1,2]*Integrate[Sqrt[Divide[((a)^(2)+ (b)^(2))*t + (b)^(2),t*(t + 1)]], {t, 0, (y)^(2)/(b)^(2)}, GenerateConditions->None]
Failure Aborted
Failed [300 / 300]
Result: -3.149531120
Test Values: {a = -3/2, b = -3/2, s = -3/2, y = -3/2}

Result: -3.149531120
Test Values: {a = -3/2, b = -3/2, s = -3/2, y = 3/2}

... skip entries to safe data
Skipped - Because timed out
19.30.E9 s = 1 2 I ( 𝐞 1 ) 𝑠 1 2 𝐼 subscript 𝐞 1 {\displaystyle{\displaystyle s=\tfrac{1}{2}I(\mathbf{e}_{1})}}
s = \tfrac{1}{2}I(\mathbf{e}_{1})
r = b 4 / y 2 𝑟 superscript 𝑏 4 superscript 𝑦 2 {\displaystyle{\displaystyle r=b^{4}/y^{2}}}
s = (1)/(2)*I(e[1])
s == Divide[1,2]*I[Subscript[e, 1]]
Failure Failure
Failed [298 / 300]
Result: -1.750000000-.4330127020*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = 1/2*3^(1/2)+1/2*I}

Result: -1.066987298-.2500000002*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, s = -3/2, e[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [180 / 180]
Result: Complex[-1.375, -0.21650635094610968]
Test Values: {Rule[Complex[0, 1], 1], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.375, -0.21650635094610968]
Test Values: {Rule[Complex[0, 1], 2], Rule[s, -1.5], Rule[Subscript[e, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.30.E9 1 2 I ( 𝐞 1 ) = - 1 3 a 2 b 2 R D ( r , r + b 2 + a 2 , r + b 2 ) + y r + b 2 + a 2 r + b 2 1 2 𝐼 subscript 𝐞 1 1 3 superscript 𝑎 2 superscript 𝑏 2 Carlson-integral-RD 𝑟 𝑟 superscript 𝑏 2 superscript 𝑎 2 𝑟 superscript 𝑏 2 𝑦 𝑟 superscript 𝑏 2 superscript 𝑎 2 𝑟 superscript 𝑏 2 {\displaystyle{\displaystyle\tfrac{1}{2}I(\mathbf{e}_{1})=-\tfrac{1}{3}a^{2}b^% {2}R_{D}\left(r,r+b^{2}+a^{2},r+b^{2}\right)+y\sqrt{\frac{r+b^{2}+a^{2}}{r+b^{% 2}}}}}
\tfrac{1}{2}I(\mathbf{e}_{1}) = -\tfrac{1}{3}a^{2}b^{2}\CarlsonsymellintRD@{r}{r+b^{2}+a^{2}}{r+b^{2}}+y\sqrt{\frac{r+b^{2}+a^{2}}{r+b^{2}}}
r = b 4 / y 2 𝑟 superscript 𝑏 4 superscript 𝑦 2 {\displaystyle{\displaystyle r=b^{4}/y^{2}}}
Error
Divide[1,2]*I[Subscript[e, 1]] == -Divide[1,3]*(a)^(2)* (b)^(2)* 3*(EllipticF[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)]-EllipticE[ArcCos[Sqrt[r/r + (b)^(2)]],(r + (b)^(2)-r + (b)^(2)+ (a)^(2))/(r + (b)^(2)-r)])/((r + (b)^(2)-r + (b)^(2)+ (a)^(2))*(r + (b)^(2)-r)^(1/2))+ y*Sqrt[Divide[r + (b)^(2)+ (a)^(2),r + (b)^(2)]]
Missing Macro Error Failure Skip - symbolical successful subtest Skip - No test values generated
19.30.E10 r 2 = 2 a 2 cos ( 2 θ ) superscript 𝑟 2 2 superscript 𝑎 2 2 𝜃 {\displaystyle{\displaystyle r^{2}=2a^{2}\cos\left(2\theta\right)}}
r^{2} = 2a^{2}\cos@{2\theta}
0 θ , θ 2 π formulae-sequence 0 𝜃 𝜃 2 𝜋 {\displaystyle{\displaystyle 0\leq\theta,\theta\leq 2\pi}}
(r)^(2) = 2*(a)^(2)* cos(2*theta)
(r)^(2) == 2*(a)^(2)* Cos[2*\[Theta]]
Failure Failure
Failed [108 / 108]
Result: 6.704966234
Test Values: {a = -3/2, r = -3/2, theta = 3/2}

Result: -.181360376
Test Values: {a = -3/2, r = -3/2, theta = 1/2}

... skip entries to safe data
Failed [108 / 108]
Result: 6.704966234702004
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 1.5]}

Result: -0.18136037640662916
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[θ, 0.5]}

... skip entries to safe data
19.30.E11 s = 2 a 2 0 r d t 4 a 4 - t 4 𝑠 2 superscript 𝑎 2 superscript subscript 0 𝑟 𝑡 4 superscript 𝑎 4 superscript 𝑡 4 {\displaystyle{\displaystyle s=2a^{2}\int_{0}^{r}\frac{\mathrm{d}t}{\sqrt{4a^{% 4}-t^{4}}}}}
s = 2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}}
q = 2 a 2 / r 2 , 2 a 2 / r 2 = sec ( 2 θ ) formulae-sequence 𝑞 2 superscript 𝑎 2 superscript 𝑟 2 2 superscript 𝑎 2 superscript 𝑟 2 2 𝜃 {\displaystyle{\displaystyle q=2a^{2}/r^{2},2a^{2}/r^{2}=\sec\left(2\theta% \right)}}
s = 2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r)
s == 2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None]
Error Failure -
Failed [208 / 216]
Result: 0.042085201578189846
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[s, -1.5]}

Result: 3.04208520157819
Test Values: {Rule[a, -1.5], Rule[r, -1.5], Rule[s, 1.5]}

... skip entries to safe data
19.30.E11 2 a 2 0 r d t 4 a 4 - t 4 = 2 a 2 R F ( q - 1 , q , q + 1 ) 2 superscript 𝑎 2 superscript subscript 0 𝑟 𝑡 4 superscript 𝑎 4 superscript 𝑡 4 2 superscript 𝑎 2 Carlson-integral-RF 𝑞 1 𝑞 𝑞 1 {\displaystyle{\displaystyle 2a^{2}\int_{0}^{r}\frac{\mathrm{d}t}{\sqrt{4a^{4}% -t^{4}}}=\sqrt{2a^{2}}R_{F}\left(q-1,q,q+1\right)}}
2a^{2}\int_{0}^{r}\frac{\diff{t}}{\sqrt{4a^{4}-t^{4}}} = \sqrt{2a^{2}}\CarlsonsymellintRF@{q-1}{q}{q+1}
q = 2 a 2 / r 2 , 2 a 2 / r 2 = sec ( 2 θ ) formulae-sequence 𝑞 2 superscript 𝑎 2 superscript 𝑟 2 2 superscript 𝑎 2 superscript 𝑟 2 2 𝜃 {\displaystyle{\displaystyle q=2a^{2}/r^{2},2a^{2}/r^{2}=\sec\left(2\theta% \right)}}
2*(a)^(2)* int((1)/(sqrt(4*(a)^(4)- (t)^(4))), t = 0..r) = sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+q - 1)*sqrt(t+q)*sqrt(t+q + 1)), t = 0..infinity)
2*(a)^(2)* Integrate[Divide[1,Sqrt[4*(a)^(4)- (t)^(4)]], {t, 0, r}, GenerateConditions->None] == Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[q - 1/q + 1]],(q + 1-q)/(q + 1-q - 1)]/Sqrt[q + 1-q - 1]
Error Failure -
Failed [12 / 12]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, 2], Rule[r, -1.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[q, 2], Rule[r, 1.5]}

... skip entries to safe data
19.30.E12 s = a F ( ϕ , 1 / 2 ) 𝑠 𝑎 elliptic-integral-first-kind-F italic-ϕ 1 2 {\displaystyle{\displaystyle s=aF\left(\phi,1/\sqrt{2}\right)}}
s = a\incellintFk@{\phi}{1/\sqrt{2}}
ϕ = arcsin 2 / ( q + 1 ) , arcsin 2 / ( q + 1 ) = arccos ( tan θ ) formulae-sequence italic-ϕ 2 𝑞 1 2 𝑞 1 𝜃 {\displaystyle{\displaystyle\phi=\operatorname{arcsin}\sqrt{2/(q+1)},% \operatorname{arcsin}\sqrt{2/(q+1)}=\operatorname{arccos}\left(\tan\theta% \right)}}
s = a*EllipticF(sin(phi), 1/(sqrt(2)))
s == a*EllipticF[\[Phi], (1/(Sqrt[2]))^2]
Failure Failure
Failed [300 / 300]
Result: -.201379324+.8785912788*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = -3/2}

Result: 2.798620676+.8785912788*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, s = 3/2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.8505476575870029, 0.390685462269601]
Test Values: {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.859414812385125, 0.6494166239344216]
Test Values: {Rule[a, -1.5], Rule[s, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.30.E13 P = 4 2 a 2 R F ( 0 , 1 , 2 ) 𝑃 4 2 superscript 𝑎 2 Carlson-integral-RF 0 1 2 {\displaystyle{\displaystyle P=4\sqrt{2a^{2}}R_{F}\left(0,1,2\right)}}
P = 4\sqrt{2a^{2}}\CarlsonsymellintRF@{0}{1}{2}

P = 4*sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity)
P == 4*Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0]
Failure Failure
Failed [60 / 60]
Result: -10.25842266+.5000000000*I
Test Values: {P = 1/2*3^(1/2)+1/2*I, a = -3/2}

Result: -10.25842266+.5000000000*I
Test Values: {P = 1/2*3^(1/2)+1/2*I, a = 3/2}

... skip entries to safe data
Failed [60 / 60]
Result: Complex[-10.691435361916012, 0.24999999999999997]
Test Values: {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-11.37444806380823, 0.43301270189221935]
Test Values: {Rule[a, -1.5], Rule[P, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.30.E13 4 2 a 2 R F ( 0 , 1 , 2 ) = 2 a 2 × 5.24411 51 4 2 superscript 𝑎 2 Carlson-integral-RF 0 1 2 2 superscript 𝑎 2 5.24411 51 {\displaystyle{\displaystyle 4\sqrt{2a^{2}}R_{F}\left(0,1,2\right)=\sqrt{2a^{2% }}\times 5.24411\;51\ldots}}
4\sqrt{2a^{2}}\CarlsonsymellintRF@{0}{1}{2} = \sqrt{2a^{2}}\times 5.24411\;51\ldots

4*sqrt(2*(a)^(2))*0.5*int(1/(sqrt(t+0)*sqrt(t+1)*sqrt(t+2)), t = 0..infinity) = sqrt(2*(a)^(2)) * 5.2441151
4*Sqrt[2*(a)^(2)]*EllipticF[ArcCos[Sqrt[0/2]],(2-1)/(2-0)]/Sqrt[2-0] == Sqrt[2*(a)^(2)] * 5.2441151
Translation Error Translation Error Skip - symbolical successful subtest Skip - symbolical successful subtest
19.30.E13 2 a 2 × 5.24411 51 = 4 a K ( 1 / 2 ) 2 superscript 𝑎 2 5.24411 51 4 𝑎 complete-elliptic-integral-first-kind-K 1 2 {\displaystyle{\displaystyle\sqrt{2a^{2}}\times 5.24411\;51\ldots=4aK\left(1/% \sqrt{2}\right)}}
\sqrt{2a^{2}}\times 5.24411\;51\ldots = 4a\compellintKk@{1/\sqrt{2}}

sqrt(2*(a)^(2)) * 5.2441151 = 4*a*EllipticK(1/(sqrt(2)))
Sqrt[2*(a)^(2)] * 5.2441151 == 4*a*EllipticK[(1/(Sqrt[2]))^2]
Translation Error Translation Error Skip - symbolical successful subtest Skip - symbolical successful subtest
19.30.E13 4 a K ( 1 / 2 ) = a × 7.41629 87 4 𝑎 complete-elliptic-integral-first-kind-K 1 2 𝑎 7.41629 87 {\displaystyle{\displaystyle 4aK\left(1/\sqrt{2}\right)=a\times 7.41629\;87% \dots}}
4a\compellintKk@{1/\sqrt{2}} = a\times 7.41629\;87\dots

4*a*EllipticK(1/(sqrt(2))) = a * 7.4162987
4*a*EllipticK[(1/(Sqrt[2]))^2] == a * 7.4162987
Translation Error Translation Error Skip - symbolical successful subtest Skip - symbolical successful subtest
19.32.E1 z ( p ) = R F ( p - x 1 , p - x 2 , p - x 3 ) 𝑧 𝑝 Carlson-integral-RF 𝑝 subscript 𝑥 1 𝑝 subscript 𝑥 2 𝑝 subscript 𝑥 3 {\displaystyle{\displaystyle z(p)=R_{F}\left(p-x_{1},p-x_{2},p-x_{3}\right)}}
z(p) = \CarlsonsymellintRF@{p-x_{1}}{p-x_{2}}{p-x_{3}}

(x + y*I)*(p) = 0.5*int(1/(sqrt(t+p - x[1])*sqrt(t+p - x[2])*sqrt(t+p - x[3])), t = 0..infinity)
(x + y*I)*(p) == EllipticF[ArcCos[Sqrt[p - Subscript[x, 1]/p - Subscript[x, 3]]],(p - Subscript[x, 3]-p - Subscript[x, 2])/(p - Subscript[x, 3]-p - Subscript[x, 1])]/Sqrt[p - Subscript[x, 3]-p - Subscript[x, 1]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[-0.7208699572238464, -0.7193085577979393]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.3758216901446034, -2.446030868401005]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.32.E3 x 1 > x 2 subscript 𝑥 1 subscript 𝑥 2 {\displaystyle{\displaystyle x_{1}>x_{2}}}
x_{1} > x_{2}

x[1] > x[2]
Subscript[x, 1] > Subscript[x, 2]
Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex1 z ( ) = 0 𝑧 0 {\displaystyle{\displaystyle z(\infty)=0}}
z(\infty) = 0

z(infinity) = 0
z[Infinity] == 0
Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex3 z ( x 2 ) = z ( x 1 ) + z ( x 3 ) 𝑧 subscript 𝑥 2 𝑧 subscript 𝑥 1 𝑧 subscript 𝑥 3 {\displaystyle{\displaystyle z(x_{2})=z(x_{1})+z(x_{3})}}
z(x_{2}) = z(x_{1})+z(x_{3})

(x + y*I)*(x[2]) = (x + y*I)*(x[1])+(x + y*I)*(x[3])
(x + y*I)*(Subscript[x, 2]) == (x + y*I)*(Subscript[x, 1])+(x + y*I)*(Subscript[x, 3])
Skipped - no semantic math Skipped - no semantic math - -
19.32#Ex4 z ( x 3 ) = R F ( x 3 - x 1 , x 3 - x 2 , 0 ) 𝑧 subscript 𝑥 3 Carlson-integral-RF subscript 𝑥 3 subscript 𝑥 1 subscript 𝑥 3 subscript 𝑥 2 0 {\displaystyle{\displaystyle z(x_{3})=R_{F}\left(x_{3}-x_{1},x_{3}-x_{2},0% \right)}}
z(x_{3}) = \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0}

(x + y*I)*(x[3]) = 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity)
(x + y*I)*(Subscript[x, 3]) == EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Plus[Complex[1.024519052838329, -0.27451905283832906], Times[Complex[-0.25881904510252074, -0.9659258262890683], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[0.27451905283832917, 1.0245190528383288], Times[Complex[-0.7239434227163943, -0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.32#Ex4 R F ( x 3 - x 1 , x 3 - x 2 , 0 ) = - i R F ( 0 , x 1 - x 3 , x 2 - x 3 ) Carlson-integral-RF subscript 𝑥 3 subscript 𝑥 1 subscript 𝑥 3 subscript 𝑥 2 0 𝑖 Carlson-integral-RF 0 subscript 𝑥 1 subscript 𝑥 3 subscript 𝑥 2 subscript 𝑥 3 {\displaystyle{\displaystyle R_{F}\left(x_{3}-x_{1},x_{3}-x_{2},0\right)=-iR_{% F}\left(0,x_{1}-x_{3},x_{2}-x_{3}\right)}}
\CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} = -i\CarlsonsymellintRF@{0}{x_{1}-x_{3}}{x_{2}-x_{3}}

0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) = - I*0.5*int(1/(sqrt(t+0)*sqrt(t+x[1]- x[3])*sqrt(t+x[2]- x[3])), t = 0..infinity)
EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] == - I*EllipticF[ArcCos[Sqrt[0/Subscript[x, 2]- Subscript[x, 3]]],(Subscript[x, 2]- Subscript[x, 3]-Subscript[x, 1]- Subscript[x, 3])/(Subscript[x, 2]- Subscript[x, 3]-0)]/Sqrt[Subscript[x, 2]- Subscript[x, 3]-0]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[-0.4754994064110389, 1.6461555153586378], Times[Complex[0.7239434227163943, 0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.33.E1 S = 3 V R G ( a - 2 , b - 2 , c - 2 ) 𝑆 3 𝑉 Carlson-integral-RG superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 {\displaystyle{\displaystyle S=3VR_{G}\left(a^{-2},b^{-2},c^{-2}\right)}}
S = 3V\CarlsonsymellintRG@{a^{-2}}{b^{-2}}{c^{-2}}

Error
S == 3*V*Sqrt[(c)^(- 2)-(a)^(- 2)]*(EllipticE[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+(Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]])^2*EllipticF[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]],((c)^(- 2)-(b)^(- 2))/((c)^(- 2)-(a)^(- 2))]+Cot[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(a)^(- 2)/(c)^(- 2)]]]^2])
Missing Macro Error Failure -
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.33.E2 S 2 π = c 2 + a b sin ϕ ( E ( ϕ , k ) sin 2 ϕ + F ( ϕ , k ) cos 2 ϕ ) 𝑆 2 𝜋 superscript 𝑐 2 𝑎 𝑏 italic-ϕ elliptic-integral-second-kind-E italic-ϕ 𝑘 2 italic-ϕ elliptic-integral-first-kind-F italic-ϕ 𝑘 2 italic-ϕ {\displaystyle{\displaystyle\frac{S}{2\pi}=c^{2}+\frac{ab}{\sin\phi}\left(E% \left(\phi,k\right){\sin^{2}}\phi+F\left(\phi,k\right){\cos^{2}}\phi\right)}}
\frac{S}{2\pi} = c^{2}+\frac{ab}{\sin@@{\phi}}\left(\incellintEk@{\phi}{k}\sin^{2}@@{\phi}+\incellintFk@{\phi}{k}\cos^{2}@@{\phi}\right)
a b , b c formulae-sequence 𝑎 𝑏 𝑏 𝑐 {\displaystyle{\displaystyle a\geq b,b\geq c}}
(S)/(2*Pi) = (c)^(2)+(a*b)/(sin(phi))*(EllipticE(sin(phi), k)*(sin(phi))^(2)+ EllipticF(sin(phi), k)*(cos(phi))^(2))
Divide[S,2*Pi] == (c)^(2)+Divide[a*b,Sin[\[Phi]]]*(EllipticE[\[Phi], (k)^2]*(Sin[\[Phi]])^(2)+ EllipticF[\[Phi], (k)^2]*(Cos[\[Phi]])^(2))
Failure Failure
Failed [300 / 300]
Result: -4.910443424-.9759333290e-1*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -5.505002077-.4622644670e-1*I
Test Values: {S = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-4.54039506540302, -0.09283854764917886]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 1], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-4.634568996487559, -0.31545051747139075]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[k, 2], Rule[S, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.33#Ex1 cos ϕ = c a italic-ϕ 𝑐 𝑎 {\displaystyle{\displaystyle\cos\phi=\frac{c}{a}}}
\cos@@{\phi} = \frac{c}{a}

cos(phi) = (c)/(a)
Cos[\[Phi]] == Divide[c,a]
Failure Failure
Failed [300 / 300]
Result: -.2694569811-.3969495503*I
Test Values: {a = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I}

Result: .227765517+.4690753764*I
Test Values: {a = -3/2, c = -3/2, phi = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.06378043051909243, -0.10599798465255418]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.061176166972244816, 0.11050836582743673]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.33#Ex2 k 2 = a 2 ( b 2 - c 2 ) b 2 ( a 2 - c 2 ) superscript 𝑘 2 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 superscript 𝑏 2 superscript 𝑎 2 superscript 𝑐 2 {\displaystyle{\displaystyle k^{2}=\frac{a^{2}(b^{2}-c^{2})}{b^{2}(a^{2}-c^{2}% )}}}
k^{2} = \frac{a^{2}(b^{2}-c^{2})}{b^{2}(a^{2}-c^{2})}

(k)^(2) = ((a)^(2)*((b)^(2)- (c)^(2)))/((b)^(2)*((a)^(2)- (c)^(2)))
(k)^(2) == Divide[(a)^(2)*((b)^(2)- (c)^(2)),(b)^(2)*((a)^(2)- (c)^(2))]
Skipped - no semantic math Skipped - no semantic math - -
19.33.E4 x 2 a 2 + λ + y 2 b 2 + λ + z 2 c 2 + λ = 1 superscript 𝑥 2 superscript 𝑎 2 𝜆 superscript 𝑦 2 superscript 𝑏 2 𝜆 superscript 𝑧 2 superscript 𝑐 2 𝜆 1 {\displaystyle{\displaystyle\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+% \lambda}+\frac{z^{2}}{c^{2}+\lambda}=1}}
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}+\frac{z^{2}}{c^{2}+\lambda} = 1

((x)^(2))/((a)^(2)+ lambda)+((y)^(2))/((b)^(2)+ lambda)+((x + y*I)^(2))/((c)^(2)+ lambda) = 1
Divide[(x)^(2),(a)^(2)+ \[Lambda]]+Divide[(y)^(2),(b)^(2)+ \[Lambda]]+Divide[(x + y*I)^(2),(c)^(2)+ \[Lambda]] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.33.E5 V ( λ ) = Q R F ( a 2 + λ , b 2 + λ , c 2 + λ ) 𝑉 𝜆 𝑄 Carlson-integral-RF superscript 𝑎 2 𝜆 superscript 𝑏 2 𝜆 superscript 𝑐 2 𝜆 {\displaystyle{\displaystyle V(\lambda)=QR_{F}\left(a^{2}+\lambda,b^{2}+% \lambda,c^{2}+\lambda\right)}}
V(\lambda) = Q\CarlsonsymellintRF@{a^{2}+\lambda}{b^{2}+\lambda}{c^{2}+\lambda}

V(lambda) = Q*0.5*int(1/(sqrt(t+(a)^(2)+ lambda)*sqrt(t+(b)^(2)+ lambda)*sqrt(t+(c)^(2)+ lambda)), t = 0..infinity)
V[\[Lambda]] == Q*EllipticF[ArcCos[Sqrt[(a)^(2)+ \[Lambda]/(c)^(2)+ \[Lambda]]],((c)^(2)+ \[Lambda]-(b)^(2)+ \[Lambda])/((c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda])]/Sqrt[(c)^(2)+ \[Lambda]-(a)^(2)+ \[Lambda]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[-0.01914487900157147, 0.6670953471925876]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.08207662518407155, 0.5134467292285442]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[Q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[V, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[λ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.33.E6 1 / C = R F ( a 2 , b 2 , c 2 ) 1 𝐶 Carlson-integral-RF superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 {\displaystyle{\displaystyle 1/C=R_{F}\left(a^{2},b^{2},c^{2}\right)}}
1/C = \CarlsonsymellintRF@{a^{2}}{b^{2}}{c^{2}}

1/C = 0.5*int(1/(sqrt(t+(a)^(2))*sqrt(t+(b)^(2))*sqrt(t+(c)^(2))), t = 0..infinity)
1/C == EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]/Sqrt[(c)^(2)-(a)^(2)]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[C, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.33.E7 L c = 2 π a b c 0 d λ ( a 2 + λ ) ( b 2 + λ ) ( c 2 + λ ) 3 subscript 𝐿 𝑐 2 𝜋 𝑎 𝑏 𝑐 superscript subscript 0 𝜆 superscript 𝑎 2 𝜆 superscript 𝑏 2 𝜆 superscript superscript 𝑐 2 𝜆 3 {\displaystyle{\displaystyle L_{c}=2\pi abc\int_{0}^{\infty}\frac{\mathrm{d}% \lambda}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}}}}
L_{c} = 2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}}

L[c] = 2*Pi*a*b*c*int((1)/(sqrt(((a)^(2)+ lambda)*((b)^(2)+ lambda)*((c)^(2)+ lambda)^(3))), lambda = 0..infinity)
Subscript[L, c] == 2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.33.E7 2 π a b c 0 d λ ( a 2 + λ ) ( b 2 + λ ) ( c 2 + λ ) 3 = V R D ( a 2 , b 2 , c 2 ) 2 𝜋 𝑎 𝑏 𝑐 superscript subscript 0 𝜆 superscript 𝑎 2 𝜆 superscript 𝑏 2 𝜆 superscript superscript 𝑐 2 𝜆 3 𝑉 Carlson-integral-RD superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 {\displaystyle{\displaystyle 2\pi abc\int_{0}^{\infty}\frac{\mathrm{d}\lambda}% {\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}}=VR_{D}\left(a^{2},b% ^{2},c^{2}\right)}}
2\pi abc\int_{0}^{\infty}\frac{\diff{\lambda}}{\sqrt{(a^{2}+\lambda)(b^{2}+\lambda)(c^{2}+\lambda)^{3}}} = V\CarlsonsymellintRD@{a^{2}}{b^{2}}{c^{2}}

Error
2*Pi*a*b*c*Integrate[Divide[1,Sqrt[((a)^(2)+ \[Lambda])*((b)^(2)+ \[Lambda])*((c)^(2)+ \[Lambda])^(3)]], {\[Lambda], 0, Infinity}, GenerateConditions->None] == V*3*(EllipticF[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))]-EllipticE[ArcCos[Sqrt[(a)^(2)/(c)^(2)]],((c)^(2)-(b)^(2))/((c)^(2)-(a)^(2))])/(((c)^(2)-(b)^(2))*((c)^(2)-(a)^(2))^(1/2))
Missing Macro Error Aborted Skip - symbolical successful subtest Skipped - Because timed out
19.33.E8 L a + L b + L c = 4 π subscript 𝐿 𝑎 subscript 𝐿 𝑏 subscript 𝐿 𝑐 4 𝜋 {\displaystyle{\displaystyle L_{a}+L_{b}+L_{c}=4\pi}}
L_{a}+L_{b}+L_{c} = 4\pi

L[a]+ L[b]+ L[c] = 4*Pi
Subscript[L, a]+ Subscript[L, b]+ Subscript[L, c] == 4*Pi
Skipped - no semantic math Skipped - no semantic math - -
19.34.E1 a b 0 2 π ( h 2 + a 2 + b 2 - 2 a b cos θ ) - 1 / 2 cos θ d θ = 2 a b - 1 1 t d t ( 1 + t ) ( 1 - t ) ( a 3 - 2 a b t ) 𝑎 𝑏 superscript subscript 0 2 𝜋 superscript superscript 2 superscript 𝑎 2 superscript 𝑏 2 2 𝑎 𝑏 𝜃 1 2 𝜃 𝜃 2 𝑎 𝑏 superscript subscript 1 1 𝑡 𝑡 1 𝑡 1 𝑡 subscript 𝑎 3 2 𝑎 𝑏 𝑡 {\displaystyle{\displaystyle ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos\theta% )^{-1/2}\cos\theta\mathrm{d}\theta=2ab\int_{-1}^{1}\frac{t\mathrm{d}t}{\sqrt{(% 1+t)(1-t)(a_{3}-2abt)}}}}
ab\int_{0}^{2\pi}(h^{2}+a^{2}+b^{2}-2ab\cos@@{\theta})^{-1/2}\cos@@{\theta}\diff{\theta} = 2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}}

a*b*int(((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*cos(theta))^(- 1/2)* cos(theta), theta = 0..2*Pi) = 2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1)
a*b*Integrate[((h)^(2)+ (a)^(2)+ (b)^(2)- 2*a*b*Cos[\[Theta]])^(- 1/2)* Cos[\[Theta]], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None]
Aborted Aborted Skipped - Because timed out Skipped - Because timed out
19.34.E1 2 a b - 1 1 t d t ( 1 + t ) ( 1 - t ) ( a 3 - 2 a b t ) = 2 a b I ( 𝐞 5 ) 2 𝑎 𝑏 superscript subscript 1 1 𝑡 𝑡 1 𝑡 1 𝑡 subscript 𝑎 3 2 𝑎 𝑏 𝑡 2 𝑎 𝑏 𝐼 subscript 𝐞 5 {\displaystyle{\displaystyle 2ab\int_{-1}^{1}\frac{t\mathrm{d}t}{\sqrt{(1+t)(1% -t)(a_{3}-2abt)}}=2abI(\mathbf{e}_{5})}}
2ab\int_{-1}^{1}\frac{t\diff{t}}{\sqrt{(1+t)(1-t)(a_{3}-2abt)}} = 2abI(\mathbf{e}_{5})

2*a*b*int((t)/(sqrt((1 + t)*(1 - t)*(a[3]- 2*a*b*t))), t = - 1..1) = 2*abI(e[5])
2*a*b*Integrate[Divide[t,Sqrt[(1 + t)*(1 - t)*(Subscript[a, 3]- 2*a*b*t)]], {t, - 1, 1}, GenerateConditions->None] == 2*abI[Subscript[e, 5]]
Failure Aborted
Failed [300 / 300]
Result: -3.959693187-6.593729744*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = 1/2*3^(1/2)+1/2*I}

Result: 2.187421133-4.946615428*I
Test Values: {I = 1/2*3^(1/2)+1/2*I, a = -3/2, b = -3/2, a[3] = 1/2*3^(1/2)+1/2*I, e[5] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
19.34#Ex1 a 3 = h 2 + a 2 + b 2 subscript 𝑎 3 superscript 2 superscript 𝑎 2 superscript 𝑏 2 {\displaystyle{\displaystyle a_{3}=h^{2}+a^{2}+b^{2}}}
a_{3} = h^{2}+a^{2}+b^{2}

a[3] = (h)^(2)+ (a)^(2)+ (b)^(2)
Subscript[a, 3] == (h)^(2)+ (a)^(2)+ (b)^(2)
Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex2 a 5 = 0 subscript 𝑎 5 0 {\displaystyle{\displaystyle a_{5}=0}}
a_{5} = 0

a[5] = 0
Subscript[a, 5] == 0
Skipped - no semantic math Skipped - no semantic math - -
19.34#Ex3 b 5 = 1 subscript 𝑏 5 1 {\displaystyle{\displaystyle b_{5}=1}}
b_{5} = 1

b[5] = 1
Subscript[b, 5] == 1
Skipped - no semantic math Skipped - no semantic math - -
19.34.E3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) - I ( 𝐞 3 ) 2 𝑎 𝑏 𝐼 subscript 𝐞 5 subscript 𝑎 3 𝐼 0 𝐼 subscript 𝐞 3 {\displaystyle{\displaystyle 2abI(\mathbf{e}_{5})=a_{3}I(\boldsymbol{{0}})-I(% \mathbf{e}_{3})}}
2abI(\mathbf{e}_{5}) = a_{3}I(\boldsymbol{{0}})-I(\mathbf{e}_{3})

2*abI(e[5]) = a[3]*I(0)- I(e[3])
2*abI[Subscript[e, 5]] == Subscript[a, 3]*I[0]- I[Subscript[e, 3]]
Skipped - no semantic math Skipped - no semantic math - -
19.34.E4 r + 2 = a 3 + 2 a b superscript subscript 𝑟 2 subscript 𝑎 3 2 𝑎 𝑏 {\displaystyle{\displaystyle r_{+}^{2}=a_{3}+2ab}}
r_{+}^{2} = a_{3}+ 2ab

(r[+])^(2) = a[3]+ 2*a*b
(Subscript[r, +])^(2) == Subscript[a, 3]+ 2*a*b
Skipped - no semantic math Skipped - no semantic math - -
19.36.E3 R F ( 1 , 2 , 4 ) = R F ( z 1 , z 2 , z 3 ) Carlson-integral-RF 1 2 4 Carlson-integral-RF subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 3 {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=R_{F}\left(z_{1},z_{2},z_% {3}\right)}}
\CarlsonsymellintRF@{1}{2}{4} = \CarlsonsymellintRF@{z_{1}}{z_{2}}{z_{3}}

0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.5*int(1/(sqrt(t+z[1])*sqrt(t+z[2])*sqrt(t+z[3])), t = 0..infinity)
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == EllipticF[ArcCos[Sqrt[Subscript[z, 1]/Subscript[z, 3]]],(Subscript[z, 3]-Subscript[z, 2])/(Subscript[z, 3]-Subscript[z, 1])]/Sqrt[Subscript[z, 3]-Subscript[z, 1]]
Aborted Failure Skipped - Because timed out
Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6113291272616378, 0.7460602493090597]
Test Values: {Rule[Subscript[z, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[z, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E4


\begin{aligned} \displaystyle z_{1}&\displaystyle = 2.10985\;99098\;8,\\ \displaystyle z_{3}&\displaystyle

Skipped - no semantic math Skipped - no semantic math - -
19.36.E5 R F ( 1 , 2 , 4 ) = 0.68508 58166 Carlson-integral-RF 1 2 4 0.68508 58166 {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=0.68508\;58166\dots}}
\CarlsonsymellintRF@{1}{2}{4} = 0.68508\;58166\dots

0.5*int(1/(sqrt(t+1)*sqrt(t+2)*sqrt(t+4)), t = 0..infinity) = 0.6850858166
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 0.6850858166
Failure Failure Successful [Tested: 0] Successful [Tested: 1]
19.36#Ex1 2 a n + 1 = a n + a n 2 - c n 2 2 subscript 𝑎 𝑛 1 subscript 𝑎 𝑛 superscript subscript 𝑎 𝑛 2 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2a_{n+1}=a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}}}}
2a_{n+1} = a_{n}+\sqrt{a_{n}^{2}-c_{n}^{2}}

2*a[n + 1] = a[n]+sqrt((a[n])^(2)- (c[n])^(2))
2*Subscript[a, n + 1] == Subscript[a, n]+Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex2 2 c n + 1 = a n - a n 2 - c n 2 2 subscript 𝑐 𝑛 1 subscript 𝑎 𝑛 superscript subscript 𝑎 𝑛 2 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2c_{n+1}=a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}}}}
2c_{n+1} = a_{n}-\sqrt{a_{n}^{2}-c_{n}^{2}}

2*c[n + 1] = a[n]-sqrt((a[n])^(2)- (c[n])^(2))
2*Subscript[c, n + 1] == Subscript[a, n]-Sqrt[(Subscript[a, n])^(2)- (Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex3 2 t n + 1 = t n + t n 2 + θ c n 2 2 subscript 𝑡 𝑛 1 subscript 𝑡 𝑛 superscript subscript 𝑡 𝑛 2 𝜃 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle 2t_{n+1}=t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}}}}
2t_{n+1} = t_{n}+\sqrt{t_{n}^{2}+\theta c_{n}^{2}}

2*t[n + 1] = t[n]+sqrt((t[n])^(2)+ theta*(c[n])^(2))
2*Subscript[t, n + 1] == Subscript[t, n]+Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex4 0 < c 0 0 subscript 𝑐 0 {\displaystyle{\displaystyle 0<c_{0}}}
0 < c_{0}

0 < c[0]
0 < Subscript[c, 0]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex5 t 0 0 subscript 𝑡 0 0 {\displaystyle{\displaystyle t_{0}\geq 0}}
t_{0} \geq 0

t[0] >= 0
Subscript[t, 0] >= 0
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex6 t 0 2 + θ a 0 2 0 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑎 0 2 0 {\displaystyle{\displaystyle t_{0}^{2}+\theta a_{0}^{2}\geq 0}}
t_{0}^{2}+\theta a_{0}^{2} \geq 0

(t[0])^(2)+ theta*(a[0])^(2) >= 0
(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2) >= 0
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex7 θ = + 1 𝜃 1 {\displaystyle{\displaystyle\theta=+1}}
\theta = + 1

theta = + 1
\[Theta] == + 1
Skipped - no semantic math Skipped - no semantic math - -
19.36.E9 R F ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = R F ( T 2 , T 2 , T 2 + θ M 2 ) Carlson-integral-RF superscript subscript 𝑡 0 2 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑐 0 2 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑎 0 2 Carlson-integral-RF superscript 𝑇 2 superscript 𝑇 2 superscript 𝑇 2 𝜃 superscript 𝑀 2 {\displaystyle{\displaystyle R_{F}\left(t_{0}^{2},t_{0}^{2}+\theta c_{0}^{2},t% _{0}^{2}+\theta a_{0}^{2}\right)=R_{F}\left(T^{2},T^{2},T^{2}+\theta M^{2}% \right)}}
\CarlsonsymellintRF@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}}

0.5*int(1/(sqrt(t+(t[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(c[0])^(2))*sqrt(t+(t[0])^(2)+ theta*(a[0])^(2))), t = 0..infinity) = 0.5*int(1/(sqrt(t+(T)^(2))*sqrt(t+(T)^(2))*sqrt(t+(T)^(2)+ theta*(M)^(2))), t = 0..infinity)
EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]/Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)] == EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)]
Error Failure -
Failed [300 / 300]
Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[0.041390391732804066, 0.9969018367602411], Times[2.8284271247461903, Power[Times[Complex[0.0, 1.0], a], Rational[-1, 2]], EllipticF[ArcCos[Power[Plus[Complex[-0.031249999999999986, 0.05412658773652742], Times[Complex[0.0, 0.125], a]], Rational[1, 2]]], Times[Complex[0.0, -8.0], Power[a, -1], Plus[Times[Complex[0.0, 0.125], a], Times[Complex[0.0, 0.125], c]]]]]]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[a, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[c, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[t, 0], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E9 R F ( T 2 , T 2 , T 2 + θ M 2 ) = R C ( T 2 + θ M 2 , T 2 ) Carlson-integral-RF superscript 𝑇 2 superscript 𝑇 2 superscript 𝑇 2 𝜃 superscript 𝑀 2 Carlson-integral-RC superscript 𝑇 2 𝜃 superscript 𝑀 2 superscript 𝑇 2 {\displaystyle{\displaystyle R_{F}\left(T^{2},T^{2},T^{2}+\theta M^{2}\right)=% R_{C}\left(T^{2}+\theta M^{2},T^{2}\right)}}
\CarlsonsymellintRF@{T^{2}}{T^{2}}{T^{2}+\theta M^{2}} = \CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}

Error
EllipticF[ArcCos[Sqrt[(T)^(2)/(T)^(2)+ \[Theta]*(M)^(2)]],((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))/((T)^(2)+ \[Theta]*(M)^(2)-(T)^(2))]/Sqrt[(T)^(2)+ \[Theta]*(M)^(2)-(T)^(2)] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]
Missing Macro Error Failure -
Failed [300 / 300]
Result: Complex[-1.634056915706757, -0.008820605997006181]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-1.6914869520542948, 0.13073697514602478]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[θ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36#Ex9 a 3 2 = 2.46209 30206 0 superscript subscript 𝑎 3 2 2.46209 30206 0 {\displaystyle{\displaystyle a_{3}^{2}=2.46209\;30206\;0}}
a_{3}^{2} = 2.46209\;30206\;0

(a[3])^(2) = 2.46209302060
(Subscript[a, 3])^(2) == 2.46209302060
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex10 t 3 2 = 1.46971 53173 1 superscript subscript 𝑡 3 2 1.46971 53173 1 {\displaystyle{\displaystyle t_{3}^{2}=1.46971\;53173\;1}}
t_{3}^{2} = 1.46971\;53173\;1

(t[3])^(2) = 1.46971531731
(Subscript[t, 3])^(2) == 1.46971531731
Skipped - no semantic math Skipped - no semantic math - -
19.36.E11 R F ( 1 , 2 , 4 ) = R C ( T 2 + M 2 , T 2 ) Carlson-integral-RF 1 2 4 Carlson-integral-RC superscript 𝑇 2 superscript 𝑀 2 superscript 𝑇 2 {\displaystyle{\displaystyle R_{F}\left(1,2,4\right)=R_{C}\left(T^{2}+M^{2},T^% {2}\right)}}
\CarlsonsymellintRF@{1}{2}{4} = \CarlsonellintRC@{T^{2}+M^{2}}{T^{2}}

Error
EllipticF[ArcCos[Sqrt[1/4]],(4-2)/(4-1)]/Sqrt[4-1] == 1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))]
Missing Macro Error Failure -
Failed [100 / 100]
Result: Complex[-0.841498016533642, 0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.8857105197615976, -2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36.E11 R C ( T 2 + M 2 , T 2 ) = 0.68508 58166 Carlson-integral-RC superscript 𝑇 2 superscript 𝑀 2 superscript 𝑇 2 0.68508 58166 {\displaystyle{\displaystyle R_{C}\left(T^{2}+M^{2},T^{2}\right)=0.68508\;5816% 6}}
\CarlsonellintRC@{T^{2}+M^{2}}{T^{2}} = 0.68508\;58166

Error
1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ (M)^(2))/((T)^(2))] == 0.6850858166
Missing Macro Error Failure -
Failed [100 / 100]
Result: Complex[0.8414980165670778, -0.8813735870195429]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.8857105197950335, 2.720699010523131]
Test Values: {Rule[M, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[T, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
19.36#Ex11 h n = t n 2 + θ a n 2 subscript 𝑛 superscript subscript 𝑡 𝑛 2 𝜃 superscript subscript 𝑎 𝑛 2 {\displaystyle{\displaystyle h_{n}=\sqrt{t_{n}^{2}+\theta a_{n}^{2}}}}
h_{n} = \sqrt{t_{n}^{2}+\theta a_{n}^{2}}

h[n] = sqrt((t[n])^(2)+ theta*(a[n])^(2))
Subscript[h, n] == Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[a, n])^(2)]
Skipped - no semantic math Skipped - no semantic math - -
19.36#Ex12 h n = h n - 1 t n t n 2 + θ c n 2 subscript 𝑛 subscript 𝑛 1 subscript 𝑡 𝑛 superscript subscript 𝑡 𝑛 2 𝜃 superscript subscript 𝑐 𝑛 2 {\displaystyle{\displaystyle h_{n}=h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c% _{n}^{2}}}}}
h_{n} = h_{n-1}\frac{t_{n}}{\sqrt{t_{n}^{2}+\theta c_{n}^{2}}}

h[n] = h[n - 1]*(t[n])/(sqrt((t[n])^(2)+ theta*(c[n])^(2)))
Subscript[h, n] == Subscript[h, n - 1]*Divide[Subscript[t, n],Sqrt[(Subscript[t, n])^(2)+ \[Theta]*(Subscript[c, n])^(2)]]
Skipped - no semantic math Skipped - no semantic math - -
19.36.E13 2 R G ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = ( t 0 2 + θ m = 0 2 m - 1 c m 2 ) R C ( T 2 + θ M 2 , T 2 ) + h 0 + m = 1 2 m ( h m - h m - 1 ) 2 Carlson-integral-RG superscript subscript 𝑡 0 2 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑐 0 2 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑎 0 2 superscript subscript 𝑡 0 2 𝜃 superscript subscript 𝑚 0 superscript 2 𝑚 1 superscript subscript 𝑐 𝑚 2 Carlson-integral-RC superscript 𝑇 2 𝜃 superscript 𝑀 2 superscript 𝑇 2 subscript 0 superscript subscript 𝑚 1 superscript 2 𝑚 subscript 𝑚 subscript 𝑚 1 {\displaystyle{\displaystyle 2R_{G}\left(t_{0}^{2},t_{0}^{2}+\theta c_{0}^{2},% t_{0}^{2}+\theta a_{0}^{2}\right)=\left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{% m-1}c_{m}^{2}\right)R_{C}\left(T^{2}+\theta M^{2},T^{2}\right)+h_{0}+\sum_{m=1% }^{\infty}2^{m}(h_{m}-h_{m-1})}}
2\CarlsonsymellintRG@{t_{0}^{2}}{t_{0}^{2}+\theta c_{0}^{2}}{t_{0}^{2}+\theta a_{0}^{2}} = \left(t_{0}^{2}+\theta\sum_{m=0}^{\infty}2^{m-1}c_{m}^{2}\right)\CarlsonellintRC@{T^{2}+\theta M^{2}}{T^{2}}+h_{0}+\sum_{m=1}^{\infty}2^{m}(h_{m}-h_{m-1})

Error
2*Sqrt[(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)]*(EllipticE[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+(Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]])^2*EllipticF[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]],((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[c, 0])^(2))/((Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)-(Subscript[t, 0])^(2))]+Cot[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[(Subscript[t, 0])^(2)/(Subscript[t, 0])^(2)+ \[Theta]*(Subscript[a, 0])^(2)]]]^2]) == ((Subscript[t, 0])^(2)+ \[Theta]*Sum[(2)^(m - 1)* (Subscript[c, m])^(2), {m, 0, Infinity}, GenerateConditions->None])*1/Sqrt[(T)^(2)]*Hypergeometric2F1[1/2,1/2,3/2,1-((T)^(2)+ \[Theta]*(M)^(2))/((T)^(2))]+ Subscript[h, 0]+ Sum[(2)^(m)*(Subscript[h, m]- Subscript[h, m - 1]), {m, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Aborted -
Failed [1 / 1]