DLMF:18.27.E23 (Q5974): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: Q11169 / rank
 
Normal rank
Property / Symbols used: Q11169 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle\left\lfloor\NVar{x}\right\rfloor}}

\floor{\NVar{x}}
Property / Symbols used: Q11169 / qualifier
 
xml-id: introduction.Sx4.p1.t1.r17.m4aadec

Revision as of 00:51, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.27.E23
No description defined

    Statements

    h ~ n ( x ; q ) = ( q ; q ) n = 0 n / 2 ( - 1 ) q - 2 n q ( 2 + 1 ) x n - 2 ( q 2 ; q 2 ) ( q ; q ) n - 2 = x n ϕ 1 2 ( q - n , q - n + 1 0 ; q 2 , - x - 2 q 2 ) . discrete-q-Hermite-polynomial-h-II 𝑛 𝑥 𝑞 q-Pochhammer-symbol 𝑞 𝑞 𝑛 superscript subscript 0 𝑛 2 superscript 1 superscript 𝑞 2 𝑛 superscript 𝑞 2 1 superscript 𝑥 𝑛 2 q-Pochhammer-symbol superscript 𝑞 2 superscript 𝑞 2 q-Pochhammer-symbol 𝑞 𝑞 𝑛 2 superscript 𝑥 𝑛 q-hypergeometric-rphis 2 1 superscript 𝑞 𝑛 superscript 𝑞 𝑛 1 0 superscript 𝑞 2 superscript 𝑥 2 superscript 𝑞 2 {\displaystyle{\displaystyle\tilde{h}_{n}\left(x;q\right)=\left(q;q\right)_{n}% \sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}\frac{(-1)^{\ell}q^{-2n\ell}q^{% \ell(2\ell+1)}x^{n-2\ell}}{\left(q^{2};q^{2}\right)_{\ell}\left(q;q\right)_{n-% 2\ell}}=x^{n}{{}_{2}\phi_{1}}\left({q^{-n},q^{-n+1}\atop 0};q^{2},-x^{-2}q^{2}% \right).}}
    0 references
    0 references
    x 𝑥 {\displaystyle{\displaystyle\left\lfloor\NVar{x}\right\rfloor}}
    introduction.Sx4.p1.t1.r17.m4aadec
    0 references