DLMF:18.37.E1 (Q6049): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: Q11660 / rank
 
Normal rank
Property / Symbols used: Q11660 / qualifier
 
test:

P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}

\JacobipolyP{\NVar{\alpha}}{\NVar{\beta}}{\NVar{n}}@{\NVar{x}}
Property / Symbols used: Q11660 / qualifier
 
xml-id: C18.S3.T1.t1.r2.m2adec

Revision as of 12:31, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.37.E1
No description defined

    Statements

    R m , n ( α ) ( r e i θ ) = e i ( m - n ) θ r | m - n | P min ( m , n ) ( α , | m - n | ) ( 2 r 2 - 1 ) P min ( m , n ) ( α , | m - n | ) ( 1 ) , disk-orthogonal-polynomial-R 𝛼 𝑚 𝑛 𝑟 superscript 𝑒 imaginary-unit 𝜃 superscript 𝑒 imaginary-unit 𝑚 𝑛 𝜃 superscript 𝑟 𝑚 𝑛 Jacobi-polynomial-P 𝛼 𝑚 𝑛 𝑚 𝑛 2 superscript 𝑟 2 1 Jacobi-polynomial-P 𝛼 𝑚 𝑛 𝑚 𝑛 1 {\displaystyle{\displaystyle R^{(\alpha)}_{m,n}\left(re^{\mathrm{i}\theta}% \right)=e^{\mathrm{i}(m-n)\theta}r^{|m-n|}\frac{P^{(\alpha,|m-n|)}_{\min(m,n)}% \left(2r^{2}-1\right)}{P^{(\alpha,|m-n|)}_{\min(m,n)}\left(1\right)},}}
    0 references
    0 references
    θ 𝜃 {\displaystyle{\displaystyle\theta\in\mathbb{R}}}
    0 references
    θ 𝜃 {\displaystyle{\displaystyle\theta\in\mathbb{R}}}
    0 references
    α > - 1 𝛼 1 {\displaystyle{\displaystyle\alpha>-1}}
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2adec
    0 references