DLMF:19.4.E8 (Q6128): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / rank
 
Normal rank
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
test:

F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}

\incellintFk@{\NVar{\phi}}{\NVar{k}}
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
xml-id: C19.S2.E4.m2abdec

Revision as of 12:38, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:19.4.E8
No description defined

    Statements

    ( k k 2 D k 2 + ( 1 - 3 k 2 ) D k - k ) F ( ϕ , k ) = - k sin ϕ cos ϕ ( 1 - k 2 sin 2 ϕ ) 3 / 2 , 𝑘 superscript superscript 𝑘 2 superscript subscript 𝐷 𝑘 2 1 3 superscript 𝑘 2 subscript 𝐷 𝑘 𝑘 elliptic-integral-first-kind-F italic-ϕ 𝑘 𝑘 italic-ϕ italic-ϕ superscript 1 superscript 𝑘 2 2 italic-ϕ 3 2 {\displaystyle{\displaystyle(k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)F% \left(\phi,k\right)=\frac{-k\sin\phi\cos\phi}{(1-k^{2}{\sin^{2}}\phi)^{3/2}},}}
    0 references
    0 references
    cos z 𝑧 {\displaystyle{\displaystyle\cos\NVar{z}}}
    C4.S14.E2.m2abdec
    0 references
    F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}
    C19.S2.E4.m2abdec
    0 references