Verifying DLMF with Maple and Mathematica: Difference between revisions
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 82: | Line 82: | ||
# [[Results of Asymptotic Approximations|Asymptotic Approximations]] | # [[Results of Asymptotic Approximations|Asymptotic Approximations]] | ||
# [[Results of Numerical Methods|Numerical Methods]] | # [[Results of Numerical Methods|Numerical Methods]] | ||
# [[Results of Elementary Functions | # [[Results of Elementary Functions|Elementary Functions]] | ||
# [[Results of Gamma Function|Gamma Function]] | # [[Results of Gamma Function|Gamma Function]] | ||
# [[Results of Exponential, Logarithmic, Sine, and Cosine Integrals|Exponential, Logarithmic, Sine, and Cosine Integrals]] | # [[Results of Exponential, Logarithmic, Sine, and Cosine Integrals|Exponential, Logarithmic, Sine, and Cosine Integrals]] | ||
Line 88: | Line 88: | ||
# [[Results of Incomplete Gamma and Related Functions|Incomplete Gamma and Related Functions]] | # [[Results of Incomplete Gamma and Related Functions|Incomplete Gamma and Related Functions]] | ||
# [[Results of Airy and Related Functions|Airy and Related Functions]] | # [[Results of Airy and Related Functions|Airy and Related Functions]] | ||
# [[Results of Bessel Functions | # [[Results of Bessel Functions|Bessel Functions]] | ||
# [[Results of Struve and Related Functions|Struve and Related Functions]] | # [[Results of Struve and Related Functions|Struve and Related Functions]] | ||
# [[Results of Parabolic Cylinder Functions|Parabolic Cylinder Functions]] | # [[Results of Parabolic Cylinder Functions|Parabolic Cylinder Functions]] | ||
# [[Results of Confluent Hypergeometric Functions | # [[Results of Confluent Hypergeometric Functions|Confluent Hypergeometric Functions]] | ||
# [[Results of Legendre and Related Functions | # [[Results of Legendre and Related Functions|Legendre and Related Functions]] | ||
# [[Results of Hypergeometric Function I|Hypergeometric Function | # [[Results of Hypergeometric Function I|Hypergeometric Function]] | ||
# [[Results of Generalized Hypergeometric Functions and Meijer G-Function|Generalized Hypergeometric Functions and Meijer ''G''-Function]] | # [[Results of Generalized Hypergeometric Functions and Meijer G-Function|Generalized Hypergeometric Functions and Meijer ''G''-Function]] | ||
# [[Results of q-Hypergeometric and Related Functions|''q''-Hypergeometric and Related Functions]] | # [[Results of q-Hypergeometric and Related Functions|''q''-Hypergeometric and Related Functions]] | ||
# [[Results of Orthogonal Polynomials | # [[Results of Orthogonal Polynomials|Orthogonal Polynomials]] | ||
# [[Results of Elliptic Integrals | # [[Results of Elliptic Integrals|Elliptic Integrals]] | ||
# [[Results of Theta Functions|Theta Functions]] | # [[Results of Theta Functions|Theta Functions]] | ||
# [[Results of Multidimensional Theta Functions|Multidimensional Theta Functions]] | # [[Results of Multidimensional Theta Functions|Multidimensional Theta Functions]] | ||
Line 203: | Line 203: | ||
|| 0 || 0.0% || 29 || [ 8 / 21] || 6 || 0 | || 0 || 0.0% || 29 || [ 8 / 21] || 6 || 0 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 4. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 4. [[Results of Elementary Functions|EF]] | ||
| style="border-right: solid 1px #000;" | 569 | | style="border-right: solid 1px #000;" | 569 | ||
|| 353 || 494 | || 353 || 494 | ||
Line 275: | Line 275: | ||
|| 30 || 27.3% || 58 || [ 38 / 20] || 14 || 7 | || 30 || 27.3% || 58 || [ 38 / 20] || 14 || 7 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 10. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 10. [[Results of Bessel Functions|BS]] | ||
| style="border-right: solid 1px #000;" | 653 | | style="border-right: solid 1px #000;" | 653 | ||
|| 143 || 392 | || 143 || 392 | ||
Line 311: | Line 311: | ||
|| 13 || 18.0% || 43 || [ 15 / 28] || 12 || 3 | || 13 || 18.0% || 43 || [ 15 / 28] || 12 || 3 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 13. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 13. [[Results of Confluent Hypergeometric Functions|CH]] | ||
| style="border-right: solid 1px #000;" | 260 | | style="border-right: solid 1px #000;" | 260 | ||
|| 126 || 252 | || 126 || 252 | ||
Line 323: | Line 323: | ||
|| 23 || 12.4% || 95 || [ 59 / 36] || 45 || 21 | || 23 || 12.4% || 95 || [ 59 / 36] || 45 || 21 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 14. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 14. [[Results of Legendre and Related Functions|LE]] | ||
| style="border-right: solid 1px #000;" | 238 | | style="border-right: solid 1px #000;" | 238 | ||
|| 166 || 230 | || 166 || 230 | ||
Line 335: | Line 335: | ||
|| 59 || 29.6% || 92 || [ 54 / 38] || 41 || 5 | || 59 || 29.6% || 92 || [ 54 / 38] || 41 || 5 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 15. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 15. [[Results of Hypergeometric Function|HY]] | ||
| style="border-right: solid 1px #000;" | 206 | | style="border-right: solid 1px #000;" | 206 | ||
|| 148 || 198 | || 148 || 198 | ||
Line 371: | Line 371: | ||
|| 13 || 11.0% || 57 || [ 52 / 5] || 39 || 5 | || 13 || 11.0% || 57 || [ 52 / 5] || 39 || 5 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 18. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 18. [[Results of Orthogonal Polynomials|OP]] | ||
| style="border-right: solid 1px #000;" | 468 | | style="border-right: solid 1px #000;" | 468 | ||
|| 132 || 235 | || 132 || 235 | ||
Line 383: | Line 383: | ||
|| 45 || 24.3% || 68 || [ 31 / 37] || 52 || 12 | || 45 || 24.3% || 68 || [ 31 / 37] || 52 || 12 | ||
|- | |- | ||
! scope="row" style="text-align: left; border-right: solid 1px #000"| 19. | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 19. [[Results of Elliptic Integrals|EL]] | ||
| style="border-right: solid 1px #000;" | 516 | | style="border-right: solid 1px #000;" | 516 | ||
|| 103 || 252 | || 103 || 252 |
Revision as of 15:29, 25 May 2021
This page presents the results of the publication: Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems.
Bug Reports
You can find a PDF with commands that illustrate the encountered errors in Mathematica here: File:Mathematica Bugs Overview.pdf
We provide the same file in the Wolfram system notebook format (NB) here: File:Mathematica Bugs Notebook File.nb
DLMF Translations and Results
This section explains the data you can access. Below, you will find a large table that shows the overall results of translations, symbolic and numeric verifications, as well as a number of errors and aborted calculations for each DLMF chapter. Before you move on to investigating the results, please have a look at how to read the data first.
How to read the data?
The data on this website can be considered as an extension of the DLMF but not a copy. Some labeled equations in the DLMF do not appear in this data because they were skipped or caused translation errors in both systems (Maple and Mathematica). In addition, the result tables on this website do not provide context! For checking the context, every equation in our dataset is linked directly to the equation in the DLMF. You can access the original DLMF equation by clicking on the label in the most-left column in the result tables.
You can access the results by clicking on a particular chapter below. This will load a large table presenting our results for that particular chapter of the DLMF. Since most of these tables are relatively large, it may take a few moments until they are fully loaded. Below you see an example of the results with just two equations from different chapters. As you can see, the first entry 4.12.E1 is grayed out. This happens when the entry was skipped due to missing semantic macros in the source of the test case (flagged as Skipped - no semantic math
). You can see the actual semantic LaTeX source of every test case below the equation. Since most of these cases are not translated properly by LCT, we skipped them directly, i.e., they were not further processed for symbolic or numeric evaluations. In fact, those cases have not even been translated into our pipeline. However, we added the translations for them to our result tables because they may provide further interesting insights into the translation process.
The most-right columns in the table show the numeric evaluation results. If an equation was not numerically verified, it shows Failed [x/y]
where Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x}
is the number of failed calculations and Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y}
is the number of all test calculations for this test case. As you can see in the second entry below 11.5.E2, 15 test calculations failed out of 25, so 10 were successful. When you click on the little Expand
, we show the first couple of results for the failed test cases. Since the tables are already very large, we cannot show all failed test calculations.
Clicking on expand
for the second entry in our example table below, we see the test result and the test values that produced this result. As explained in the paper, the calculation was simply performed on the difference of the left- and right-hand side of the equation LHS - RHS
. Further explanations on why this test failed can be found in the paper.
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}
Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.12.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi(x+1) = e^{\phi(x)}}
\phi(x+1) = e^{\phi(x)} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -1 < x, x < \infty} | phi(x + 1) = exp(phi(x)) |
\[Phi][x + 1] == Exp[\[Phi][x]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
11.5.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}}
\StruveK{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0} | StruveH(nu, z) - BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(1)/(2)))*int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)
|
StruveH[\[Nu], z] - BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Failed [15 / 25]
Result: Complex[0.9495382353861556, -0.46093572348323536]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}
Result: Complex[0.7706973036767981, -0.20650772012904173]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}
... skip entries to safe data |
As a summary, here is an explanation for every column of the result tables.
- DLMF
- Contains the equation label as a link to the actual equation in the DLMF. Click on the label if you need to check the context of a formula in the DLMF.
- Formula
- Contains the rendered equation of the equation and the actual semantic LaTeX source (sometimes also referred to as content-tex). More information about the semantic (or content) LaTeX can be found in REF-TODO
- Constraints
- This shows the constraints that LCT has generated by analyzing the definitions of the functions that are included in the equation. This also includes the constraints that are directly attached to a test case. For example, 11.5.E2 only has the constraint Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{z} > 0} as one can see in the DLMF. LCT followed the definitions of the involved functions and identified several more constraints for this test case. A detailed explanation of this process was given in the paper. Note, however, that this list of constraints does not contain the manually global constraints we applied for all test cases (Table 3 in the paper).
- Maple
- The translation to Maple
- Mathematica
- The translations to Mathematica
- Symbolic (Maple / Mathematica)
- The result of the symbolic evaluation. If this was skipped, no calculations have been performed on the test case.
- Numeric (Maple / Mathematica)
- The result of the numeric evaluation as explained above and in the paper.
Links to the data
In the following, we present an overview of the translations of the DLMF equations to the CAS Maple and Mathematica.
DLMF | Formula | Translations Maple |
Translations Mathematica |
Symbolic Evaluation Maple |
Symbolic Evaluation Mathematica |
Numeric Evaluation Maple |
Numeric Evaluation Mathematica |
---|---|---|---|---|---|---|---|
DLMF | 6,545 | 4,114 (62.9%) | 4,713 (72.0%) | 1,084 (26.3%) | 1,235 (26.2%) | 698 (26.7%) | 784 (22.6%) |
The following links provide access to all results for each DLMF chapter. Since the pages are quite large, it may take some seconds until they are fully loaded.
- Algebraic and Analytic Methods
- Asymptotic Approximations
- Numerical Methods
- Elementary Functions
- Gamma Function
- Exponential, Logarithmic, Sine, and Cosine Integrals
- Error Functions, Dawson’s and Fresnel Integrals
- Incomplete Gamma and Related Functions
- Airy and Related Functions
- Bessel Functions
- Struve and Related Functions
- Parabolic Cylinder Functions
- Confluent Hypergeometric Functions
- Legendre and Related Functions
- Hypergeometric Function
- Generalized Hypergeometric Functions and Meijer G-Function
- q-Hypergeometric and Related Functions
- Orthogonal Polynomials
- Elliptic Integrals
- Theta Functions
- Multidimensional Theta Functions
- Jacobian Elliptic Functions
- Weierstrass Elliptic and Modular Functions
- Bernoulli and Euler Polynomials
- Zeta and Related Functions
- Combinatorial Analysis
- Functions of Number Theory
- Mathieu Functions and Hill’s Equation
- Lamé Functions
- Spheroidal Wave Functions
- Heun Functions
- Painlevé Transcendents
- Coulomb Functions
- 3j,6j,9j Symbols
- Functions of Matrix Argument
- Integrals with Coalescing Saddles
Translations and Evaluations Overview Table
Meaning | |
---|---|
2C | Chapter Code |
S | Successful |
% | Percentage |
F | Fail |
P/T | Partially / Totally Failed |
A | Aborted |
E | Errors |
Base | The baseline performance of the translator |
Maple | The CAS Maple 2020 |
Mathematica | The CAS Mathematica |
Symbolic | Numeric | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Formulae | Translations | Maple | Mathematica | Maple | Mathematica | |||||||||||||||||
2C | Total | Base | Maple | Math | S | % | F | S | % | F | S | % | F | [P/T] | A | E | S | % | F | [P/T] | A | E |
1. AL | 227 | 60 | 102 | 103 | 36 | 35.3% | 60 | 34 | 33.0% | 69 | 14 | 23.3% | 35 | [ 12 / 23] | 7 | 4 | 14 | 20.3% | 40 | [ 9 / 31] | 11 | 4 |
2. AS | 136 | 33 | 65 | 65 | 6 | 9.2% | 47 | 6 | 9.2% | 59 | 7 | 14.9% | 33 | [ 5 / 28] | 1 | 5 | 4 | 6.8% | 38 | [ 6 / 32] | 7 | 9 |
3. NM | 53 | 36 | 40 | 40 | 6 | 15.0% | 31 | 5 | 12.5% | 35 | 1 | 3.2% | 27 | [ 9 / 18] | 0 | 2 | 0 | 0.0% | 29 | [ 8 / 21] | 6 | 0 |
4. EF | 569 | 353 | 494 | 564 | 270 | 54.7% | 221 | 304 | 53.9% | 260 | 88 | 39.8% | 126 | [ 64 / 62] | 0 | 6 | 110 | 42.3% | 146 | [ 55 / 91] | 2 | 0 |
5. GA | 144 | 38 | 130 | 139 | 41 | 31.5% | 76 | 65 | 46.8% | 74 | 39 | 51.3% | 25 | [ 12 / 13] | 4 | 8 | 30 | 40.5% | 20 | [ 9 / 11] | 13 | 9 |
6. EX | 107 | 21 | 56 | 77 | 13 | 23.2% | 43 | 18 | 23.4% | 59 | 10 | 23.2% | 31 | [ 13 / 18] | 0 | 2 | 23 | 39.0% | 32 | [ 6 / 26] | 4 | 0 |
7. ER | 149 | 35 | 101 | 120 | 52 | 51.5% | 47 | 45 | 37.5% | 75 | 21 | 44.7% | 23 | [ 10 / 13] | 2 | 1 | 21 | 28.0% | 43 | [ 13 / 30] | 9 | 1 |
8. IG | 204 | 84 | 160 | 163 | 51 | 31.9% | 102 | 65 | 39.9% | 98 | 27 | 26.5% | 61 | [ 20 / 41] | 9 | 5 | 22 | 22.4% | 44 | [ 19 / 25] | 16 | 15 |
9. AI | 235 | 36 | 180 | 179 | 54 | 30.0% | 124 | 69 | 38.5% | 110 | 34 | 27.4% | 75 | [ 41 / 34] | 4 | 8 | 30 | 27.3% | 58 | [ 38 / 20] | 14 | 7 |
10. BS | 653 | 143 | 392 | 486 | 80 | 20.4% | 209 | 115 | 23.7% | 371 | 86 | 41.1% | 59 | [ 41 / 18] | 52 | 12 | 90 | 24.2% | 151 | [ 57 / 94] | 92 | 18 |
11. ST | 124 | 48 | 121 | 112 | 39 | 32.2% | 73 | 36 | 32.1% | 76 | 25 | 34.2% | 40 | [ 14 / 26] | 3 | 5 | 21 | 27.6% | 33 | [ 8 / 25] | 10 | 11 |
12. PC | 106 | 33 | 79 | 90 | 25 | 31.6% | 50 | 18 | 20.0% | 72 | 15 | 30.0% | 24 | [ 15 / 9] | 11 | 0 | 13 | 18.0% | 43 | [ 15 / 28] | 12 | 3 |
13. CH | 260 | 126 | 252 | 254 | 75 | 29.8% | 143 | 69 | 27.2% | 185 | 14 | 9.8% | 90 | [ 55 / 35] | 37 | 2 | 23 | 12.4% | 95 | [ 59 / 36] | 45 | 21 |
14. LE | 238 | 166 | 230 | 229 | 30 | 13.0% | 163 | 30 | 13.1% | 199 | 40 | 24.5% | 93 | [ 57 / 36] | 18 | 12 | 59 | 29.6% | 92 | [ 54 / 38] | 41 | 5 |
15. HY | 206 | 148 | 198 | 197 | 46 | 23.2% | 115 | 53 | 26.9% | 144 | 17 | 14.8% | 52 | [ 34 / 18] | 23 | 23 | 23 | 16.0% | 77 | [ 52 / 25] | 29 | 6 |
16. GH | 53 | 20 | 23 | 25 | 3 | 13.0% | 16 | 2 | 8.0% | 23 | 1 | 6.2% | 9 | [ 8 / 1] | 6 | 0 | 1 | 4.3% | 10 | [ 7 / 3] | 9 | 2 |
17. QH | 175 | 1 | 53 | 124 | 23 | 43.4% | 24 | 6 | 4.8% | 118 | 0 | 0.0% | 0 | [ 0 / 0] | 1 | 23 | 13 | 11.0% | 57 | [ 52 / 5] | 39 | 5 |
18. OP | 468 | 132 | 235 | 288 | 65 | 27.6% | 148 | 101 | 35.1% | 185 | 67 | 45.3% | 50 | [ 32 / 18] | 14 | 17 | 45 | 24.3% | 68 | [ 31 / 37] | 52 | 12 |
19. EL | 516 | 103 | 252 | 416 | 39 | 15.5% | 192 | 51 | 12.2% | 365 | 18 | 9.4% | 123 | [ 44 / 79] | 34 | 17 | 18 | 4.9% | 264 | [ 49 / 215] | 61 | 15 |
20. TH | 128 | 52 | 98 | 98 | 10 | 10.2% | 68 | 1 | 1.0% | 97 | 0 | 0.0% | 32 | [ 17 / 15] | 20 | 16 | 33 | 34.0% | 40 | [ 25 / 15] | 24 | 0 |
21. MT | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22. JA | 264 | 115 | 232 | 238 | 46 | 19.8% | 176 | 30 | 12.6% | 206 | 20 | 11.4% | 116 | [ 25 / 91] | 36 | 4 | 22 | 10.7% | 131 | [ 39 / 92] | 51 | 0 |
23. WE | 164 | 7 | 19 | 34 | 1 | 5.3% | 16 | 4 | 11.8% | 30 | 0 | 0.0% | 14 | [ 2 / 12] | 1 | 1 | 2 | 6.7% | 23 | [ 9 / 14] | 2 | 3 |
24. BP | 175 | 31 | 117 | 148 | 15 | 12.8% | 101 | 23 | 15.5% | 125 | 67 | 66.3% | 32 | [ 19 / 13] | 1 | 1 | 78 | 62.4% | 33 | [ 22 / 11] | 14 | 0 |
25. ZE | 154 | 28 | 124 | 120 | 19 | 15.3% | 90 | 48 | 40.0% | 72 | 43 | 47.8% | 29 | [ 18 / 11] | 10 | 8 | 22 | 30.5% | 22 | [ 6 / 16] | 22 | 3 |
26. CM | 136 | 31 | 78 | 87 | 20 | 25.6% | 50 | 19 | 21.8% | 68 | 30 | 60.0% | 11 | [ 8 / 3] | 2 | 7 | 44 | 64.7% | 18 | [ 10 / 8] | 5 | 1 |
27. NT | 79 | 5 | 26 | 15 | 3 | 11.5% | 17 | 6 | 40.0% | 9 | 2 | 11.8% | 6 | [ 3 / 3] | 0 | 8 | 3 | 33.3% | 6 | [ 3 / 3] | 0 | 0 |
28. MA | 267 | 52 | 97 | 110 | 7 | 7.2% | 80 | 7 | 6.4% | 103 | 6 | 7.5% | 32 | [ 12 / 20] | 26 | 15 | 3 | 2.9% | 48 | [ 13 / 35] | 33 | 17 |
29. LA | 111 | 11 | 23 | 22 | 0 | 0.0% | 21 | 0 | 0.0% | 22 | 0 | 0.0% | 19 | [ 2 / 17] | 0 | 2 | 0 | 0.0% | 21 | [ 1 / 20] | 0 | 1 |
30. SW | 71 | 14 | 19 | 26 | 0 | 0.0% | 18 | 0 | 0.0% | 26 | 0 | 0.0% | 18 | [ 5 / 13] | 0 | 0 | 0 | 0.0% | 19 | [ 2 / 17] | 5 | 1 |
31. HE | 35 | 29 | 22 | 15 | 5 | 22.7% | 13 | 2 | 13.3% | 13 | 2 | 15.4% | 10 | [ 0 / 10] | 0 | 1 | 0 | 0.0% | 8 | [ 0 / 8] | 5 | 0 |
32. PT | 67 | 43 | 57 | 57 | 3 | 5.3% | 51 | 3 | 5.3% | 54 | 1 | 2.0% | 44 | [ 7 / 37] | 4 | 2 | 0 | 0.0% | 41 | [ 2 / 39] | 8 | 5 |
33. CW | 108 | 21 | 14 | 11 | 1 | 7.1% | 13 | 0 | 0.0% | 11 | 0 | 0.0% | 5 | [ 2 / 3] | 0 | 8 | 0 | 0.0% | 11 | [ 2 / 9] | 0 | 0 |
34. TJ | 57 | 0 | 1 | 37 | 0 | 0.0% | 1 | 0 | 0.0% | 37 | 0 | 0.0% | 1 | [ 0 / 1] | 0 | 0 | 14 | 37.8% | 10 | [ 5 / 5] | 13 | 0 |
35. FM | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
36. IC | 106 | 12 | 24 | 24 | 0 | 0.0% | 19 | 0 | 0.0% | 24 | 3 | 15.8% | 12 | [ 1 / 11] | 3 | 1 | 3 | 12.5% | 13 | [ 1 / 12] | 1 | 6 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum} | 6545 | 2067 | 4114 | 4713 | 1084 | 26.3% | 2618 | 1235 | 26.2% | 3474 | 698 | 26.7% | 1357 | [607 / 750] | 329 | 226 | 784 | 22.6% | 1784 | [687 / 1097] | 655 | 180 |