DLMF:22.8.E18 (Q6983): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / Symbols used
 
Property / Symbols used: Jacobian elliptic function / rank
 
Normal rank
Property / Symbols used: Jacobian elliptic function / qualifier
 
test:

cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}

\Jacobiellcnk@{\NVar{z}}{\NVar{k}}
Property / Symbols used: Jacobian elliptic function / qualifier
 
xml-id: C22.S2.E5.m2ahdec

Revision as of 14:04, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:22.8.E18
No description defined

    Statements

    dn ( u + v ) = cn u dn u cn v dn v + k 2 sn u sn v cn u cn v + sn u dn u sn v dn v . Jacobi-elliptic-dn 𝑢 𝑣 𝑘 Jacobi-elliptic-cn 𝑢 𝑘 Jacobi-elliptic-dn 𝑢 𝑘 Jacobi-elliptic-cn 𝑣 𝑘 Jacobi-elliptic-dn 𝑣 𝑘 superscript superscript 𝑘 2 Jacobi-elliptic-sn 𝑢 𝑘 Jacobi-elliptic-sn 𝑣 𝑘 Jacobi-elliptic-cn 𝑢 𝑘 Jacobi-elliptic-cn 𝑣 𝑘 Jacobi-elliptic-sn 𝑢 𝑘 Jacobi-elliptic-dn 𝑢 𝑘 Jacobi-elliptic-sn 𝑣 𝑘 Jacobi-elliptic-dn 𝑣 𝑘 {\displaystyle{\displaystyle\operatorname{dn}(u+v)=\frac{\operatorname{cn}u% \operatorname{dn}u\operatorname{cn}v\operatorname{dn}v+{k^{\prime}}^{2}% \operatorname{sn}u\operatorname{sn}v}{\operatorname{cn}u\operatorname{cn}v+% \operatorname{sn}u\operatorname{dn}u\operatorname{sn}v\operatorname{dn}v}.}}
    0 references
    0 references
    cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E5.m2ahdec
    0 references