DLMF:25.11.E23 (Q7697): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Property / Symbols used | |||
Property / Symbols used: Riemann zeta function / rank | |||
Normal rank | |||
Property / Symbols used: Riemann zeta function / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{\NVar{s}}}\Riemannzeta@{\NVar{s}} | |||
Property / Symbols used: Riemann zeta function / qualifier | |||
xml-id: C25.S2.E1.m2aedec |
Revision as of 12:41, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:25.11.E23 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{1-2n}{\tfrac{1}{3}}=-\frac{\pi(9^{n}-1)\BernoullinumberB{2n}}{8n\sqrt{3}(3^{2n-1}-1)}-\frac{\BernoullinumberB{2n}\ln@@{3}}{4n\cdot 3^{2n-1}}-\frac{(-1)^{n}\digamma^{(2n-1)}@{\frac{1}{3}}}{2\sqrt{3}(6\pi)^{2n-1}}-\frac{\left(3^{2n-1}-1\right)\Riemannzeta'@{1-2n}}{2\cdot 3^{2n-1}},}
0 references
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n=1,2,3,\dots}
0 references
0 references
0 references
0 references