DLMF:26.12.E23 (Q7940): Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				imported>Admin  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				||
| Property / Symbols used | |||
| Property / Symbols used: Q12209 / rank | |||
Normal rank  | |||
| Property / Symbols used: Q12209 / qualifier | |||
test:  Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \subseteq}\subseteq | |||
| Property / Symbols used: Q12209 / qualifier | |||
xml-id: introduction.Sx4.p2.t1.r3.m2acdec  | |||
Revision as of 13:06, 2 January 2020
No description defined
| Language | Label | Description | Also known as | 
|---|---|---|---|
| English | DLMF:26.12.E23  | 
No description defined  | 
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{\begin{subarray}{c}\pi\subseteq B(r,r,r)\\ \pi\mbox{\scriptsize\ cyclically symmetric}\end{subarray}}q^{\abs{\pi}}=\prod_{h=1}^{r}\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{1\leq h<j\leq r}\frac{1-q^{3(h+2j-1)}}{1-q^{3(h+j-1)}}=\prod_{h=1}^{r}\left(\frac{1-q^{3h-1}}{1-q^{3h-2}}\prod_{j=h}^{r}\frac{1-q^{3(r+h+j-1)}}{1-q^{3(2h+j-1)}}\right).}
0 references