1.15: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E1 1.15.E1] || [[Item:Q543|<math>s_{n} = \sum_{k=0}^{n}a_{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>s_{n} = \sum_{k=0}^{n}a_{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">s[n] = sum(a[k], k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[s, n] == Sum[Subscript[a, k], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E1 1.15.E1] || <math qid="Q543">s_{n} = \sum_{k=0}^{n}a_{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>s_{n} = \sum_{k=0}^{n}a_{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">s[n] = sum(a[k], k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[s, n] == Sum[Subscript[a, k], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E3 1.15.E3] || [[Item:Q545|<math>\lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit(sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E3 1.15.E3] || <math qid="Q545">\lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit(sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E7 1.15.E7] || [[Item:Q549|<math>\lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((factorial(n))/(alpha + 1[n])*sum((alpha + 1[k])/(factorial(k))*a[n - k], k = 0..n), n = infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[(n)!,Subscript[\[Alpha]+ 1, n]]*Sum[Divide[Subscript[\[Alpha]+ 1, k],(k)!]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None], n -> Infinity, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E7 1.15.E7] || <math qid="Q549">\lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((factorial(n))/(alpha + 1[n])*sum((alpha + 1[k])/(factorial(k))*a[n - k], k = 0..n), n = infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Divide[(n)!,Subscript[\[Alpha]+ 1, n]]*Sum[Divide[Subscript[\[Alpha]+ 1, k],(k)!]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None], n -> Infinity, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E9 1.15.E9] || [[Item:Q551|<math>\lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit(exp(- t)*sum((s[n])/(factorial(n))*(t)^(n), n = 0..infinity), t = infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Exp[- t]*Sum[Divide[Subscript[s, n],(n)!]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None], t -> Infinity, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E9 1.15.E9] || <math qid="Q551">\lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit(exp(- t)*sum((s[n])/(factorial(n))*(t)^(n), n = 0..infinity), t = infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[Exp[- t]*Sum[Divide[Subscript[s, n],(n)!]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None], t -> Infinity, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E10 1.15.E10] || [[Item:Q552|<math>\sum^{\infty}_{n=0}a_{n} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}a_{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(a[n], n = 0..infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E10 1.15.E10] || <math qid="Q552">\sum^{\infty}_{n=0}a_{n} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}a_{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(a[n], n = 0..infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/1.15.E13 1.15.E13] || [[Item:Q555|<math>\frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1</syntaxhighlight> || <math>0 \leq r, r < 1</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1 - (r)^(2))/(1 - 2*r*cos(theta)+ (r)^(2)), theta = 0..2*Pi) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1 - (r)^(2),1 - 2*r*Cos[\[Theta]]+ (r)^(2)], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/1.15.E13 1.15.E13] || <math qid="Q555">\frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1</syntaxhighlight> || <math>0 \leq r, r < 1</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1 - (r)^(2))/(1 - 2*r*cos(theta)+ (r)^(2)), theta = 0..2*Pi) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1 - (r)^(2),1 - 2*r*Cos[\[Theta]]+ (r)^(2)], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/1.15.E16 1.15.E16] || [[Item:Q558|<math>\frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1)/(n + 1)*((sin((1)/(2)*(n + 1)*theta))/(sin((1)/(2)*theta)))^(2), theta = 0..2*Pi) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1,n + 1]*(Divide[Sin[Divide[1,2]*(n + 1)*\[Theta]],Sin[Divide[1,2]*\[Theta]]])^(2), {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/1.15.E16 1.15.E16] || <math qid="Q558">\frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1)/(n + 1)*((sin((1)/(2)*(n + 1)*theta))/(sin((1)/(2)*theta)))^(2), theta = 0..2*Pi) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1,n + 1]*(Divide[Sin[Divide[1,2]*(n + 1)*\[Theta]],Sin[Divide[1,2]*\[Theta]]])^(2), {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/1.15.E34 1.15.E34] || [[Item:Q576|<math>\frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1</syntaxhighlight> || <math>y > 0, -\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((2*y)/((x)^(2)+ (y)^(2)), x = - infinity..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[2*y,(x)^(2)+ (y)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/1.15.E34 1.15.E34] || <math qid="Q576">\frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1</syntaxhighlight> || <math>y > 0, -\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((2*y)/((x)^(2)+ (y)^(2)), x = - infinity..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[2*y,(x)^(2)+ (y)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/1.15.E39 1.15.E39] || [[Item:Q581|<math>\Phi(z) = \Phi(x+iy)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Phi(z) = \Phi(x+iy)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Phi*((x + y*I)) = Phi*(x + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[CapitalPhi]*((x + y*I)) == \[CapitalPhi]*(x + I*y)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 180]
| [https://dlmf.nist.gov/1.15.E39 1.15.E39] || <math qid="Q581">\Phi(z) = \Phi(x+iy)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Phi(z) = \Phi(x+iy)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Phi*((x + y*I)) = Phi*(x + I*y)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[CapitalPhi]*((x + y*I)) == \[CapitalPhi]*(x + I*y)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 180]
|-  
|-  
| [https://dlmf.nist.gov/1.15.E42 1.15.E42] || [[Item:Q584|<math>\int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(Pi*R)*(1 - cos(R*s))/((s)^(2)), s = - infinity..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Pi*R]*Divide[1 - Cos[R*s],(s)^(2)], {s, - Infinity, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1339745960+.5000000000*I
| [https://dlmf.nist.gov/1.15.E42 1.15.E42] || <math qid="Q584">\int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(Pi*R)*(1 - cos(R*s))/((s)^(2)), s = - infinity..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,Pi*R]*Divide[1 - Cos[R*s],(s)^(2)], {s, - Infinity, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1339745960+.5000000000*I
Test Values: {R = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.500000000+.8660254040*I
Test Values: {R = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.500000000+.8660254040*I
Test Values: {R = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5000000000-.8660254040*I
Test Values: {R = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.5000000000-.8660254040*I
Line 38: Line 38:
Test Values: {R = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {R = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E48 1.15.E48] || [[Item:Q590|<math>I^{\alpha}I^{\beta} = I^{\alpha+\beta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>I^{\alpha}I^{\beta} = I^{\alpha+\beta}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\beta} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(I)^(alpha)* (I)^(beta) = (I)^(alpha + beta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(I)^\[Alpha]* (I)^\[Beta] == (I)^(\[Alpha]+ \[Beta])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E48 1.15.E48] || <math qid="Q590">I^{\alpha}I^{\beta} = I^{\alpha+\beta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>I^{\alpha}I^{\beta} = I^{\alpha+\beta}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{\beta} > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(I)^(alpha)* (I)^(beta) = (I)^(alpha + beta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(I)^\[Alpha]* (I)^\[Beta] == (I)^(\[Alpha]+ \[Beta])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E52 1.15.E52] || [[Item:Q594|<math>D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}</syntaxhighlight> || <math>k = 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(k)* (I)^(alpha) = (D)^(n)* (I)^(alpha + n - k)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(k)* (I)^\[Alpha] == (D)^(n)* (I)^(\[Alpha]+ n - k)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E52 1.15.E52] || <math qid="Q594">D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}</syntaxhighlight> || <math>k = 1</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(k)* (I)^(alpha) = (D)^(n)* (I)^(alpha + n - k)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(k)* (I)^\[Alpha] == (D)^(n)* (I)^(\[Alpha]+ n - k)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E53 1.15.E53] || [[Item:Q595|<math>D^{\alpha}D^{\beta} = D^{\alpha+\beta}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D^{\alpha}D^{\beta} = D^{\alpha+\beta}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(alpha)* (D)^(beta) = (D)^(alpha + beta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^\[Alpha]* (D)^\[Beta] == (D)^(\[Alpha]+ \[Beta])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E53 1.15.E53] || <math qid="Q595">D^{\alpha}D^{\beta} = D^{\alpha+\beta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D^{\alpha}D^{\beta} = D^{\alpha+\beta}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^(alpha)* (D)^(beta) = (D)^(alpha + beta)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(D)^\[Alpha]* (D)^\[Beta] == (D)^(\[Alpha]+ \[Beta])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15#Ex2 1.15#Ex2] || [[Item:Q597|<math>a_{n} > -\frac{K}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} > -\frac{K}{n}</syntaxhighlight> || <math>n > 0, K > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] > -(K)/(n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] > -Divide[K,n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15#Ex2 1.15#Ex2] || <math qid="Q597">a_{n} > -\frac{K}{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} > -\frac{K}{n}</syntaxhighlight> || <math>n > 0, K > 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] > -(K)/(n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] > -Divide[K,n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E55 1.15.E55] || [[Item:Q598|<math>\sum^{\infty}_{n=0}a_{n} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}a_{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(a[n], n = 0..infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E55 1.15.E55] || <math qid="Q598">\sum^{\infty}_{n=0}a_{n} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum^{\infty}_{n=0}a_{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(a[n], n = 0..infinity) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/1.15.E56 1.15.E56] || [[Item:Q599|<math>\lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 - x)*sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 - x)*Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/1.15.E56 1.15.E56] || <math qid="Q599">\lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">limit((1 - x)*sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Limit[(1 - x)*Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:00, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{n} = \sum_{k=0}^{n}a_{k}}
s_{n} = \sum_{k=0}^{n}a_{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
s[n] = sum(a[k], k = 0..n)
Subscript[s, n] == Sum[Subscript[a, k], {k, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
1.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s}
\lim_{x\to 1-}\sum^{\infty}_{n=0}a_{n}x^{n} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit(sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s
Limit[Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -
1.15.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s}
\lim_{n\to\infty}\frac{n!}{(\alpha+1)_{n}}\sum^{n}_{k=0}\frac{(\alpha+1)_{k}}{k!}a_{n-k} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((factorial(n))/(alpha + 1[n])*sum((alpha + 1[k])/(factorial(k))*a[n - k], k = 0..n), n = infinity) = s
Limit[Divide[(n)!,Subscript[\[Alpha]+ 1, n]]*Sum[Divide[Subscript[\[Alpha]+ 1, k],(k)!]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None], n -> Infinity, GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -
1.15.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s}
\lim_{t\to\infty}e^{-t}\sum^{\infty}_{n=0}\frac{s_{n}}{n!}t^{n} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit(exp(- t)*sum((s[n])/(factorial(n))*(t)^(n), n = 0..infinity), t = infinity) = s
Limit[Exp[- t]*Sum[Divide[Subscript[s, n],(n)!]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None], t -> Infinity, GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -
1.15.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum^{\infty}_{n=0}a_{n} = s}
\sum^{\infty}_{n=0}a_{n} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(a[n], n = 0..infinity) = s
Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -
1.15.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1}
\frac{1}{2\pi}\int^{2\pi}_{0}P(r,\theta)\diff{\theta} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 \leq r, r < 1}
(1)/(2*Pi)*int((1 - (r)^(2))/(1 - 2*r*cos(theta)+ (r)^(2)), theta = 0..2*Pi) = 1
Divide[1,2*Pi]*Integrate[Divide[1 - (r)^(2),1 - 2*r*Cos[\[Theta]]+ (r)^(2)], {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1
Successful Aborted - Successful [Tested: 1]
1.15.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1}
\frac{1}{2\pi}\int^{2\pi}_{0}K_{n}(\theta)\diff{\theta} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2*Pi)*int((1)/(n + 1)*((sin((1)/(2)*(n + 1)*theta))/(sin((1)/(2)*theta)))^(2), theta = 0..2*Pi) = 1
Divide[1,2*Pi]*Integrate[Divide[1,n + 1]*(Divide[Sin[Divide[1,2]*(n + 1)*\[Theta]],Sin[Divide[1,2]*\[Theta]]])^(2), {\[Theta], 0, 2*Pi}, GenerateConditions->None] == 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
1.15.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1}
\frac{1}{2\pi}\int^{\infty}_{-\infty}P(x,y)\diff{x} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y > 0, -\infty < x, x < \infty}
(1)/(2*Pi)*int((2*y)/((x)^(2)+ (y)^(2)), x = - infinity..infinity) = 1
Divide[1,2*Pi]*Integrate[Divide[2*y,(x)^(2)+ (y)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 3]
1.15.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Phi(z) = \Phi(x+iy)}
\Phi(z) = \Phi(x+iy)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Phi*((x + y*I)) = Phi*(x + I*y)
\[CapitalPhi]*((x + y*I)) == \[CapitalPhi]*(x + I*y)
Successful Successful - Successful [Tested: 180]
1.15.E42 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1}
\int^{\infty}_{-\infty}K_{R}(s)\diff{s} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((1)/(Pi*R)*(1 - cos(R*s))/((s)^(2)), s = - infinity..infinity) = 1
Integrate[Divide[1,Pi*R]*Divide[1 - Cos[R*s],(s)^(2)], {s, - Infinity, Infinity}, GenerateConditions->None] == 1
Failure Aborted
Failed [7 / 10]
Result: -.1339745960+.5000000000*I
Test Values: {R = 1/2*3^(1/2)+1/2*I}

Result: -1.500000000+.8660254040*I
Test Values: {R = -1/2+1/2*I*3^(1/2)}

Result: -.5000000000-.8660254040*I
Test Values: {R = 1/2-1/2*I*3^(1/2)}

Result: -1.866025404-.5000000000*I
Test Values: {R = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Skipped - Because timed out
1.15.E48 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle I^{\alpha}I^{\beta} = I^{\alpha+\beta}}
I^{\alpha}I^{\beta} = I^{\alpha+\beta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{\alpha} > 0, \realpart@@{\beta} > 0}
(I)^(alpha)* (I)^(beta) = (I)^(alpha + beta)
(I)^\[Alpha]* (I)^\[Beta] == (I)^(\[Alpha]+ \[Beta])
Skipped - no semantic math Skipped - no semantic math - -
1.15.E52 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}}
D^{k}I^{\alpha} = D^{n}I^{\alpha+n-k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k = 1}
(D)^(k)* (I)^(alpha) = (D)^(n)* (I)^(alpha + n - k)
(D)^(k)* (I)^\[Alpha] == (D)^(n)* (I)^(\[Alpha]+ n - k)
Skipped - no semantic math Skipped - no semantic math - -
1.15.E53 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D^{\alpha}D^{\beta} = D^{\alpha+\beta}}
D^{\alpha}D^{\beta} = D^{\alpha+\beta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(D)^(alpha)* (D)^(beta) = (D)^(alpha + beta)
(D)^\[Alpha]* (D)^\[Beta] == (D)^(\[Alpha]+ \[Beta])
Skipped - no semantic math Skipped - no semantic math - -
1.15#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n} > -\frac{K}{n}}
a_{n} > -\frac{K}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n > 0, K > 0}
a[n] > -(K)/(n)
Subscript[a, n] > -Divide[K,n]
Skipped - no semantic math Skipped - no semantic math - -
1.15.E55 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum^{\infty}_{n=0}a_{n} = s}
\sum^{\infty}_{n=0}a_{n} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(a[n], n = 0..infinity) = s
Sum[Subscript[a, n], {n, 0, Infinity}, GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -
1.15.E56 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s}
\lim_{x\to 1-}(1-x)\sum^{\infty}_{n=0}a_{n}x^{n} = s
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((1 - x)*sum(a[n]*(x)^(n), n = 0..infinity), x = 1, left) = s
Limit[(1 - x)*Sum[Subscript[a, n]*(x)^(n), {n, 0, Infinity}, GenerateConditions->None], x -> 1, Direction -> "FromBelow", GenerateConditions->None] == s
Skipped - no semantic math Skipped - no semantic math - -