6.2: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E1 6.2.E1] | | | [https://dlmf.nist.gov/6.2.E1 6.2.E1] || <math qid="Q2211">\expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>Ei(z) = int((exp(- t))/(t), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, z] == Integrate[Divide[Exp[- t],t], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.393548628+1.498247032*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8944744989+3.773814377*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8944744989+3.773814377*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E2 6.2.E2] | | | [https://dlmf.nist.gov/6.2.E2 6.2.E2] || <math qid="Q2212">\expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \pi</math> || <syntaxhighlight lang=mathematica>Ei(z) = exp(- z)*int((exp(- t))/(t + z), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, z] == Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.393548628+1.498247032*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8944744989+3.773814377*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8944744989+3.773814377*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E3 6.2.E3] | | | [https://dlmf.nist.gov/6.2.E3 6.2.E3] || <math qid="Q2213">\expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, z] + Ln[z] + EulerGamma == Integrate[Divide[1 - Exp[- t],t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -0.5235987755982988], Ln[Complex[0.8660254037844387, 0.49999999999999994]]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E4 6.2.E4] | | | [https://dlmf.nist.gov/6.2.E4 6.2.E4] || <math qid="Q2214">\expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[1, z] == ExpIntegralE[1, z] + Ln[z] + EulerGamma - Log[z]- EulerGamma</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.5235987755982988], Times[-1.0, Ln[Complex[0.8660254037844387, 0.49999999999999994]]]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E6 6.2.E6] | | | [https://dlmf.nist.gov/6.2.E6 6.2.E6] || <math qid="Q2216">\expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralEi[- x] == - Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E6 6.2.E6] | | | [https://dlmf.nist.gov/6.2.E6 6.2.E6] || <math qid="Q2216">-\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- int((exp(- t))/(t), t = x..infinity) = - Ei(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None] == - ExpIntegralE[1, x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.201265867 | ||
Test Values: {x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1055536899 | Test Values: {x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1055536899 | ||
Test Values: {x = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 3] | Test Values: {x = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E7 6.2.E7] | | | [https://dlmf.nist.gov/6.2.E7 6.2.E7] || <math qid="Q2217">\expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralEi[+ x] == - ExpIntegralE[1, - x] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.5598964379112301, -3.141592653589793], Times[-1.0, Ln[-1.5]]] | ||
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.46128414924312044, -3.141592653589793], Times[-1.0, Ln[-0.5]]] | Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.46128414924312044, -3.141592653589793], Times[-1.0, Ln[-0.5]]] | ||
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E7 6.2.E7] | | | [https://dlmf.nist.gov/6.2.E7 6.2.E7] || <math qid="Q2217">\expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralEi[- x] == - ExpIntegralE[1, + x] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-1.5598964379112301, Times[-1.0, Ln[1.5]]] | ||
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.46128414924312044, Times[-1.0, Ln[0.5]]] | Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.46128414924312044, Times[-1.0, Ln[0.5]]] | ||
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E9 6.2.E9] | | | [https://dlmf.nist.gov/6.2.E9 6.2.E9] || <math qid="Q2219">\sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Si(z) = int((sin(t))/(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinIntegral[z] == Integrate[Divide[Sin[t],t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E10 6.2.E10] | | | [https://dlmf.nist.gov/6.2.E10 6.2.E10] || <math qid="Q2220">\shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ssi(z) = - int((sin(t))/(t), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinIntegral[z] - Pi/2 == - Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E10 6.2.E10] | | | [https://dlmf.nist.gov/6.2.E10 6.2.E10] || <math qid="Q2220">-\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>- int((sin(t))/(t), t = z..infinity) = Si(z)-(1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>- Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None] == SinIntegral[z]-Divide[1,2]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E11 6.2.E11] | | | [https://dlmf.nist.gov/6.2.E11 6.2.E11] || <math qid="Q2221">\cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ci((z) ) = - int((cos(t))/(t), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>CosIntegral[(z) ] == - Integrate[Divide[Cos[t],t], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Translation Error || Translation Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2#Ex1 6.2#Ex1] | | | [https://dlmf.nist.gov/6.2#Ex1 6.2#Ex1] || <math qid="Q2224">\lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(Si(x), x = infinity) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[SinIntegral[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2#Ex2 6.2#Ex2] | | | [https://dlmf.nist.gov/6.2#Ex2 6.2#Ex2] || <math qid="Q2225">\lim_{x\to\infty}\cosint@{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{x\to\infty}\cosint@{x} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(Ci(x), x = infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[CosIntegral[x], x -> Infinity, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E15 6.2.E15] | | | [https://dlmf.nist.gov/6.2.E15 6.2.E15] || <math qid="Q2226">\sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Shi(z) = int((sinh(t))/(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>SinhIntegral[z] == Integrate[Divide[Sinh[t],t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/6.2.E16 6.2.E16] | | | [https://dlmf.nist.gov/6.2.E16 6.2.E16] || <math qid="Q2227">\coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Chi(z) = gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>CoshIntegral[z] == EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:14, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
6.2.E1 | \expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t} |
Ei(z) = int((exp(- t))/(t), t = z..infinity)
|
ExpIntegralE[1, z] == Integrate[Divide[Exp[- t],t], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] | |
6.2.E2 | \expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t} |
Ei(z) = exp(- z)*int((exp(- t))/(t + z), t = 0..infinity)
|
ExpIntegralE[1, z] == Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] | |
6.2.E3 | \expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t} |
|
Error
|
ExpIntegralE[1, z] + Ln[z] + EulerGamma == Integrate[Divide[1 - Exp[- t],t], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[0.0, -0.5235987755982988], Ln[Complex[0.8660254037844387, 0.49999999999999994]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
6.2.E4 | \expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant |
|
Error
|
ExpIntegralE[1, z] == ExpIntegralE[1, z] + Ln[z] + EulerGamma - Log[z]- EulerGamma
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Plus[Complex[0.0, 0.5235987755982988], Times[-1.0, Ln[Complex[0.8660254037844387, 0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
6.2.E6 | \expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} |
|
Error
|
ExpIntegralEi[- x] == - Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Successful [Tested: 3] |
6.2.E6 | -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x} |
|
- int((exp(- t))/(t), t = x..infinity) = - Ei(x)
|
- Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None] == - ExpIntegralE[1, x]
|
Failure | Failure | Failed [3 / 3] Result: 3.201265867
Test Values: {x = 1.5}
Result: -.1055536899
Test Values: {x = .5}
... skip entries to safe data |
Successful [Tested: 3] |
6.2.E7 | \expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant |
|
Error
|
ExpIntegralEi[+ x] == - ExpIntegralE[1, - x] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Plus[Complex[-1.5598964379112301, -3.141592653589793], Times[-1.0, Ln[-1.5]]]
Test Values: {Rule[x, 1.5]}
Result: Plus[Complex[-0.46128414924312044, -3.141592653589793], Times[-1.0, Ln[-0.5]]]
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
6.2.E7 | \expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant |
|
Error
|
ExpIntegralEi[- x] == - ExpIntegralE[1, + x] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Plus[-1.5598964379112301, Times[-1.0, Ln[1.5]]]
Test Values: {Rule[x, 1.5]}
Result: Plus[-0.46128414924312044, Times[-1.0, Ln[0.5]]]
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
6.2.E9 | \sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t} |
|
Si(z) = int((sin(t))/(t), t = 0..z)
|
SinIntegral[z] == Integrate[Divide[Sin[t],t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E10 | \shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} |
|
Ssi(z) = - int((sin(t))/(t), t = z..infinity)
|
SinIntegral[z] - Pi/2 == - Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E10 | -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi |
|
- int((sin(t))/(t), t = z..infinity) = Si(z)-(1)/(2)*Pi
|
- Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None] == SinIntegral[z]-Divide[1,2]*Pi
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E11 | \cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t} |
|
Ci((z) ) = - int((cos(t))/(t), t = z..infinity)
|
CosIntegral[(z) ] == - Integrate[Divide[Cos[t],t], {t, z, Infinity}, GenerateConditions->None]
|
Translation Error | Translation Error | - | - |
6.2#Ex1 | \lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi |
|
limit(Si(x), x = infinity) = (1)/(2)*Pi
|
Limit[SinIntegral[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]*Pi
|
Successful | Successful | - | Successful [Tested: 1] |
6.2#Ex2 | \lim_{x\to\infty}\cosint@{x} = 0 |
|
limit(Ci(x), x = infinity) = 0
|
Limit[CosIntegral[x], x -> Infinity, GenerateConditions->None] == 0
|
Successful | Successful | - | Successful [Tested: 1] |
6.2.E15 | \sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t} |
|
Shi(z) = int((sinh(t))/(t), t = 0..z)
|
SinhIntegral[z] == Integrate[Divide[Sinh[t],t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |
6.2.E16 | \coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t} |
|
Chi(z) = gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z)
|
CoshIntegral[z] == EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 7] |