8.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E1 8.4.E1] | | | [https://dlmf.nist.gov/8.4.E1 8.4.E1] || <math qid="Q2495">\incgamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{0}^{z}e^{-t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{0}^{z}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2)) = 2*int(exp(- (t)^(2)), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,2], 0, (z)^(2)] == 2*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.465949776-3.038201708*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.197911286+.8974462698*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.197911286+.8974462698*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.4659497742269214, -3.038201707267986] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[3.4659497742269214, -3.038201707267986] | ||
Line 20: | Line 20: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E1 8.4.E1] | | | [https://dlmf.nist.gov/8.4.E1 8.4.E1] || <math qid="Q2495">2\int_{0}^{z}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erf@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\int_{0}^{z}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*int(exp(- (t)^(2)), t = 0..z) = sqrt(Pi)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None] == Sqrt[Pi]*Erf[z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E2 8.4.E2] | | | [https://dlmf.nist.gov/8.4.E2 8.4.E2] || <math qid="Q2496">\scincgamma@{a}{0} = \frac{1}{\EulerGamma@{a+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{a}{0} = \frac{1}{\EulerGamma@{a+1}}</syntaxhighlight> || <math>\realpart@@{(a+1)} > 0, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>(0)^(-(a))*(GAMMA(a)-GAMMA(a, 0))/GAMMA(a) = (1)/(GAMMA(a + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.7522527782 | ||
Test Values: {a = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.128379167 | Test Values: {a = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.128379167 | ||
Test Values: {a = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | Test Values: {a = .5}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E3 8.4.E3] | | | [https://dlmf.nist.gov/8.4.E3 8.4.E3] || <math qid="Q2497">\scincgamma@{\tfrac{1}{2}}{-z^{2}} = \frac{2e^{z^{2}}}{z\sqrt{\pi}}\DawsonsintF@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{\tfrac{1}{2}}{-z^{2}} = \frac{2e^{z^{2}}}{z\sqrt{\pi}}\DawsonsintF@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- (z)^(2))^(-((1)/(2)))*(GAMMA((1)/(2))-GAMMA((1)/(2), - (z)^(2)))/GAMMA((1)/(2)) = (2*exp((z)^(2)))/(z*sqrt(Pi))*dawson(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Successful || Missing Macro Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E4 8.4.E4] | | | [https://dlmf.nist.gov/8.4.E4 8.4.E4] || <math qid="Q2498">\incGamma@{0}{z} = \int_{z}^{\infty}t^{-1}e^{-t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{0}{z} = \int_{z}^{\infty}t^{-1}e^{-t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(0, z) = int((t)^(- 1)* exp(- t), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[0, z] == Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E4 8.4.E4] | | | [https://dlmf.nist.gov/8.4.E4 8.4.E4] || <math qid="Q2498">\int_{z}^{\infty}t^{-1}e^{-t}\diff{t} = \expintE@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}t^{-1}e^{-t}\diff{t} = \expintE@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((t)^(- 1)* exp(- t), t = z..infinity) = Ei(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}, GenerateConditions->None] == ExpIntegralE[1, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.393548628-1.498247032*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8944744989-3.773814377*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8944744989-3.773814377*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E5 8.4.E5] | | | [https://dlmf.nist.gov/8.4.E5 8.4.E5] || <math qid="Q2499">\incGamma@{1}{z} = e^{-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{1}{z} = e^{-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(1, z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1, z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E6 8.4.E6] | | | [https://dlmf.nist.gov/8.4.E6 8.4.E6] || <math qid="Q2500">\incGamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{z}^{\infty}e^{-t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{z}^{\infty}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA((1)/(2), (z)^(2)) = 2*int(exp(- (t)^(2)), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[Divide[1,2], (z)^(2)] == 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -3.465949776+3.038201708*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.197911286-.8974462698*I | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -3.197911286-.8974462698*I | ||
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.4659497742269214, 3.038201707267986] | Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-3.4659497742269214, 3.038201707267986] | ||
Line 42: | Line 42: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E6 8.4.E6] | | | [https://dlmf.nist.gov/8.4.E6 8.4.E6] || <math qid="Q2500">2\int_{z}^{\infty}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erfc@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\int_{z}^{\infty}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>2*int(exp(- (t)^(2)), t = z..infinity) = sqrt(Pi)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] == Sqrt[Pi]*Erfc[z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E7 8.4.E7] | | | [https://dlmf.nist.gov/8.4.E7 8.4.E7] || <math qid="Q2501">\incgamma@{n+1}{z} = n!(1-e^{-z}e_{n}(z))</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incgamma@{n+1}{z} = n!(1-e^{-z}e_{n}(z))</syntaxhighlight> || <math>\realpart@@{(n+1)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(n + 1)-GAMMA(n + 1, z) = factorial(n)*(1 - exp(- z)*exp(1)[n]*(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[n + 1, 0, z] == (n)!*(1 - Exp[- z]*Subscript[E, n]*(z))</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.7896317094254578, 0.19173078621885742], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 1]]] | ||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.06153297742196945, 0.16461464559793018], Times[-2.0, Plus[1.0, Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]]]] | Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.06153297742196945, 0.16461464559793018], Times[-2.0, Plus[1.0, Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]]]] | ||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E8 8.4.E8] | | | [https://dlmf.nist.gov/8.4.E8 8.4.E8] || <math qid="Q2502">\incGamma@{n+1}{z} = n!e^{-z}e_{n}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{n+1}{z} = n!e^{-z}e_{n}(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(n + 1, z) = factorial(n)*exp(- z)*exp(1)[n]*(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[n + 1, z] == (n)!*Exp[- z]*Subscript[E, n]*(z)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.7896317094254578, -0.19173078621885742], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 1]]] | ||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.9384670225780305, -0.16461464559793018], Times[Complex[-0.8410058187569849, -0.019850392639700967], Subscript[2.718281828459045, 2]]] | Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.9384670225780305, -0.16461464559793018], Times[Complex[-0.8410058187569849, -0.019850392639700967], Subscript[2.718281828459045, 2]]] | ||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E9 8.4.E9] | | | [https://dlmf.nist.gov/8.4.E9 8.4.E9] || <math qid="Q2503">\normincGammaP@{n+1}{z} = 1-e^{-z}e_{n}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\normincGammaP@{n+1}{z} = 1-e^{-z}e_{n}(z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(GAMMA(n + 1)-GAMMA(n + 1, z))/GAMMA(n + 1) = 1 - exp(- z)*exp(1)[n]*(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GammaRegularized[n + 1, 0, z] == 1 - Exp[- z]*Subscript[E, n]*(z)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.7896317094254579, 0.1917307862188573], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 1]]] | ||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9692335112890152, 0.08230732279896512], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 2]]] | Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9692335112890152, 0.08230732279896512], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 2]]] | ||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E10 8.4.E10] | | | [https://dlmf.nist.gov/8.4.E10 8.4.E10] || <math qid="Q2504">\normincGammaQ@{n+1}{z} = e^{-z}e_{n}(z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\normincGammaQ@{n+1}{z} = e^{-z}e_{n}(z)</syntaxhighlight> || <math>\realpart@@{(n+1)} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(n + 1, z)/GAMMA(n + 1) = exp(- z)*exp(1)[n]*(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GammaRegularized[n + 1, z] == Exp[- z]*Subscript[E, n]*(z)</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.7896317094254579, -0.1917307862188573], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 1]]] | ||
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.9692335112890152, -0.08230732279896512], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]] | Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.9692335112890152, -0.08230732279896512], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]] | ||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E12 8.4.E12] | | | [https://dlmf.nist.gov/8.4.E12 8.4.E12] || <math qid="Q2506">\scincgamma@{-n}{z} = z^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\scincgamma@{-n}{z} = z^{n}</syntaxhighlight> || <math>\realpart@@{(-n)} > 0</math> || <syntaxhighlight lang=mathematica>(z)^(-(- n))*(GAMMA(- n)-GAMMA(- n, z))/GAMMA(- n) = (z)^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E13 8.4.E13] | | | [https://dlmf.nist.gov/8.4.E13 8.4.E13] || <math qid="Q2507">\incGamma@{1-n}{z} = z^{1-n}\genexpintE{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{1-n}{z} = z^{1-n}\genexpintE{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(1 - n, z) = (z)^(1 - n)* Ei(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[1 - n, z] == (z)^(1 - n)* ExpIntegralE[n, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E14 8.4.E14] | | | [https://dlmf.nist.gov/8.4.E14 8.4.E14] || <math qid="Q2508">\normincGammaQ@{n+\tfrac{1}{2}}{z^{2}} = \erfc@{z}+\frac{e^{-z^{2}}}{\sqrt{\pi}}\sum_{k=1}^{n}\frac{z^{2k-1}}{\Pochhammersym{\tfrac{1}{2}}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\normincGammaQ@{n+\tfrac{1}{2}}{z^{2}} = \erfc@{z}+\frac{e^{-z^{2}}}{\sqrt{\pi}}\sum_{k=1}^{n}\frac{z^{2k-1}}{\Pochhammersym{\tfrac{1}{2}}{k}}</syntaxhighlight> || <math>\realpart@@{(n+\tfrac{1}{2})} > 0</math> || <syntaxhighlight lang=mathematica>GAMMA(n +(1)/(2), (z)^(2))/GAMMA(n +(1)/(2)) = erfc(z)+(exp(- (z)^(2)))/(sqrt(Pi))*sum(((z)^(2*k - 1))/(pochhammer((1)/(2), k)), k = 1..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>GammaRegularized[n +Divide[1,2], (z)^(2)] == Erfc[z]+Divide[Exp[- (z)^(2)],Sqrt[Pi]]*Sum[Divide[(z)^(2*k - 1),Pochhammer[Divide[1,2], k]], {k, 1, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.704415567+1.043704337*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .97393781e-1-.8458491548*I | Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .97393781e-1-.8458491548*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7044155650581054, 1.0437043365740406] | Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7044155650581054, 1.0437043365740406] | ||
Line 70: | Line 70: | ||
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.4.E15 8.4.E15] | | | [https://dlmf.nist.gov/8.4.E15 8.4.E15] || <math qid="Q2509">\incGamma@{-n}{z} = \frac{(-1)^{n}}{n!}\left(\expintE@{z}-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incGamma@{-n}{z} = \frac{(-1)^{n}}{n!}\left(\expintE@{z}-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>GAMMA(- n, z) = ((- 1)^(n))/(factorial(n))*(Ei(z)- exp(- z)*sum(((- 1)^(k)* factorial(k))/((z)^(k + 1)), k = 0..n - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Gamma[- n, z] == Divide[(- 1)^(n),(n)!]*(ExpIntegralE[1, z]- Exp[- z]*Sum[Divide[(- 1)^(k)* (k)!,(z)^(k + 1)], {k, 0, n - 1}, GenerateConditions->None])</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 21] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:17, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.4.E1 | \incgamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{0}^{z}e^{-t^{2}}\diff{t} |
|
GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2)) = 2*int(exp(- (t)^(2)), t = 0..z)
|
Gamma[Divide[1,2], 0, (z)^(2)] == 2*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Failure | Failure | Failed [2 / 7] Result: 3.465949776-3.038201708*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: 3.197911286+.8974462698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[3.4659497742269214, -3.038201707267986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[3.197911285535813, 0.8974462701863266]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
8.4.E1 | 2\int_{0}^{z}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erf@{z} |
|
2*int(exp(- (t)^(2)), t = 0..z) = sqrt(Pi)*erf(z)
|
2*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None] == Sqrt[Pi]*Erf[z]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
8.4.E2 | \scincgamma@{a}{0} = \frac{1}{\EulerGamma@{a+1}} |
(0)^(-(a))*(GAMMA(a)-GAMMA(a, 0))/GAMMA(a) = (1)/(GAMMA(a + 1))
|
Error
|
Failure | Missing Macro Error | Failed [3 / 3] Result: -.7522527782
Test Values: {a = 1.5}
Result: -1.128379167
Test Values: {a = .5}
... skip entries to safe data |
- | |
8.4.E3 | \scincgamma@{\tfrac{1}{2}}{-z^{2}} = \frac{2e^{z^{2}}}{z\sqrt{\pi}}\DawsonsintF@{z} |
|
(- (z)^(2))^(-((1)/(2)))*(GAMMA((1)/(2))-GAMMA((1)/(2), - (z)^(2)))/GAMMA((1)/(2)) = (2*exp((z)^(2)))/(z*sqrt(Pi))*dawson(z)
|
Error
|
Successful | Missing Macro Error | - | - |
8.4.E4 | \incGamma@{0}{z} = \int_{z}^{\infty}t^{-1}e^{-t}\diff{t} |
|
GAMMA(0, z) = int((t)^(- 1)* exp(- t), t = z..infinity)
|
Gamma[0, z] == Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}, GenerateConditions->None]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
8.4.E4 | \int_{z}^{\infty}t^{-1}e^{-t}\diff{t} = \expintE@{z} |
|
int((t)^(- 1)* exp(- t), t = z..infinity) = Ei(z)
|
Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}, GenerateConditions->None] == ExpIntegralE[1, z]
|
Failure | Failure | Failed [7 / 7] Result: -1.393548628-1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -.8944744989-3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 7] |
8.4.E5 | \incGamma@{1}{z} = e^{-z} |
|
GAMMA(1, z) = exp(- z)
|
Gamma[1, z] == Exp[- z]
|
Successful | Successful | - | Successful [Tested: 7] |
8.4.E6 | \incGamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{z}^{\infty}e^{-t^{2}}\diff{t} |
|
GAMMA((1)/(2), (z)^(2)) = 2*int(exp(- (t)^(2)), t = z..infinity)
|
Gamma[Divide[1,2], (z)^(2)] == 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [2 / 7] Result: -3.465949776+3.038201708*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
Result: -3.197911286-.8974462698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}
|
Failed [2 / 7]
Result: Complex[-3.4659497742269214, 3.038201707267986]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-3.1979112855358127, -0.8974462701863266]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
|
8.4.E6 | 2\int_{z}^{\infty}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erfc@{z} |
|
2*int(exp(- (t)^(2)), t = z..infinity) = sqrt(Pi)*erfc(z)
|
2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] == Sqrt[Pi]*Erfc[z]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 7] |
8.4.E7 | \incgamma@{n+1}{z} = n!(1-e^{-z}e_{n}(z)) |
GAMMA(n + 1)-GAMMA(n + 1, z) = factorial(n)*(1 - exp(- z)*exp(1)[n]*(z))
|
Gamma[n + 1, 0, z] == (n)!*(1 - Exp[- z]*Subscript[E, n]*(z))
|
Failure | Failure | Error | Failed [21 / 21]
Result: Plus[Complex[-0.7896317094254578, 0.19173078621885742], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 1]]]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.06153297742196945, 0.16461464559793018], Times[-2.0, Plus[1.0, Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]]]]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
8.4.E8 | \incGamma@{n+1}{z} = n!e^{-z}e_{n}(z) |
|
GAMMA(n + 1, z) = factorial(n)*exp(- z)*exp(1)[n]*(z)
|
Gamma[n + 1, z] == (n)!*Exp[- z]*Subscript[E, n]*(z)
|
Failure | Failure | Error | Failed [21 / 21]
Result: Plus[Complex[0.7896317094254578, -0.19173078621885742], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 1]]]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[1.9384670225780305, -0.16461464559793018], Times[Complex[-0.8410058187569849, -0.019850392639700967], Subscript[2.718281828459045, 2]]]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
8.4.E9 | \normincGammaP@{n+1}{z} = 1-e^{-z}e_{n}(z) |
|
(GAMMA(n + 1)-GAMMA(n + 1, z))/GAMMA(n + 1) = 1 - exp(- z)*exp(1)[n]*(z)
|
GammaRegularized[n + 1, 0, z] == 1 - Exp[- z]*Subscript[E, n]*(z)
|
Failure | Failure | Error | Failed [21 / 21]
Result: Plus[Complex[-0.7896317094254579, 0.1917307862188573], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 1]]]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.9692335112890152, 0.08230732279896512], Times[Complex[0.42050290937849244, 0.009925196319850484], Subscript[2.718281828459045, 2]]]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
8.4.E10 | \normincGammaQ@{n+1}{z} = e^{-z}e_{n}(z) |
GAMMA(n + 1, z)/GAMMA(n + 1) = exp(- z)*exp(1)[n]*(z)
|
GammaRegularized[n + 1, z] == Exp[- z]*Subscript[E, n]*(z)
|
Failure | Failure | Error | Failed [21 / 21]
Result: Plus[Complex[0.7896317094254579, -0.1917307862188573], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 1]]]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.9692335112890152, -0.08230732279896512], Times[Complex[-0.42050290937849244, -0.009925196319850484], Subscript[2.718281828459045, 2]]]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
8.4.E12 | \scincgamma@{-n}{z} = z^{n} |
(z)^(-(- n))*(GAMMA(- n)-GAMMA(- n, z))/GAMMA(- n) = (z)^(n)
|
Error
|
Failure | Missing Macro Error | Error | - | |
8.4.E13 | \incGamma@{1-n}{z} = z^{1-n}\genexpintE{n}@{z} |
|
GAMMA(1 - n, z) = (z)^(1 - n)* Ei(n, z)
|
Gamma[1 - n, z] == (z)^(1 - n)* ExpIntegralE[n, z]
|
Successful | Successful | - | Successful [Tested: 21] |
8.4.E14 | \normincGammaQ@{n+\tfrac{1}{2}}{z^{2}} = \erfc@{z}+\frac{e^{-z^{2}}}{\sqrt{\pi}}\sum_{k=1}^{n}\frac{z^{2k-1}}{\Pochhammersym{\tfrac{1}{2}}{k}} |
GAMMA(n +(1)/(2), (z)^(2))/GAMMA(n +(1)/(2)) = erfc(z)+(exp(- (z)^(2)))/(sqrt(Pi))*sum(((z)^(2*k - 1))/(pochhammer((1)/(2), k)), k = 1..n)
|
GammaRegularized[n +Divide[1,2], (z)^(2)] == Erfc[z]+Divide[Exp[- (z)^(2)],Sqrt[Pi]]*Sum[Divide[(z)^(2*k - 1),Pochhammer[Divide[1,2], k]], {k, 1, n}, GenerateConditions->None]
|
Failure | Failure | Failed [6 / 21] Result: 1.704415567+1.043704337*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}
Result: .97393781e-1-.8458491548*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}
... skip entries to safe data |
Failed [6 / 21]
Result: Complex[1.7044155650581054, 1.0437043365740406]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.09739377924871273, -0.8458491528064774]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.4.E15 | \incGamma@{-n}{z} = \frac{(-1)^{n}}{n!}\left(\expintE@{z}-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right) |
|
GAMMA(- n, z) = ((- 1)^(n))/(factorial(n))*(Ei(z)- exp(- z)*sum(((- 1)^(k)* factorial(k))/((z)^(k + 1)), k = 0..n - 1))
|
Gamma[- n, z] == Divide[(- 1)^(n),(n)!]*(ExpIntegralE[1, z]- Exp[- z]*Sum[Divide[(- 1)^(k)* (k)!,(z)^(k + 1)], {k, 0, n - 1}, GenerateConditions->None])
|
Failure | Failure | Manual Skip! | Successful [Tested: 21] |