8.21: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] | | | [https://dlmf.nist.gov/8.21.E3 8.21.E3] || <math qid="Q2724">\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/8.21.E3 8.21.E3] | | | [https://dlmf.nist.gov/8.21.E3 8.21.E3] || <math qid="Q2724">\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}</syntaxhighlight> || <math>0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 1] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:19, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.21.E3 | \int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a} |
int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)
|
Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]
|
Successful | Aborted | - | Successful [Tested: 1] | |
8.21.E3 | \int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a} |
int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)
|
Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]
|
Successful | Aborted | - | Successful [Tested: 1] |