9.10: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/9.10.E1 9.10.E1] || [[Item:Q2883|<math>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = z..infinity) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, z, Infinity}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerGi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerGi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3430999769-.7863536809e-1*I
| [https://dlmf.nist.gov/9.10.E1 9.10.E1] || <math qid="Q2883">\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = z..infinity) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, z, Infinity}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerGi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerGi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3430999769-.7863536809e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1173558541-.6113539683*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1173558541-.6113539683*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E2 9.10.E2] || [[Item:Q2884|<math>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..z) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, z}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerHi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3430999769+.7863536803e-1*I
| [https://dlmf.nist.gov/9.10.E2 9.10.E2] || <math qid="Q2884">\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..z) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, z}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerHi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3430999769+.7863536803e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1173558550+.6113539681*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1173558550+.6113539681*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..z) = int(AiryBi(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, z}, GenerateConditions->None] == Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..z) = int(AiryBi(t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, z}, GenerateConditions->None] == Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = 0..z) = Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None] == Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2028158445+.1550535689*I
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = 0..z) = Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) ))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None] == Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2028158445+.1550535689*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5468682154-.3940689299*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .5468682154-.3940689299*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || [[Item:Q2885|<math>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )) = Pi*(AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}]) == Pi*(AiryBi[z]*D[ScorerHi[z], {z, 1}]- D[AiryBi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .843931870+.115991466*I
| [https://dlmf.nist.gov/9.10.E3 9.10.E3] || <math qid="Q2885">\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )) = Pi*(AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}]) == Pi*(AiryBi[z]*D[ScorerHi[z], {z, 1}]- D[AiryBi[z], {z, 1}]*ScorerHi[z])</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .843931870+.115991466*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9844521300+1.906824069*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.9844521300+1.906824069*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] || [[Item:Q2893|<math>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = 0..infinity) = (1)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.10#Ex1 9.10#Ex1] || <math qid="Q2893">\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = 0..infinity) = (1)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] || [[Item:Q2894|<math>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..0) = (2)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, 0}, GenerateConditions->None] == Divide[2,3]</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.10#Ex2 9.10#Ex2] || <math qid="Q2894">\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryAi(t), t = - infinity..0) = (2)/(3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryAi[t], {t, - Infinity, 0}, GenerateConditions->None] == Divide[2,3]</syntaxhighlight> || Failure || Successful || Skip - No test values generated || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E12 9.10.E12] || [[Item:Q2895|<math>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, 0}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.10.E12 9.10.E12] || <math qid="Q2895">\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(AiryBi(t), t = - infinity..0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[AiryBi[t], {t, - Infinity, 0}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E13 9.10.E13] || [[Item:Q2896|<math>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(p*t)*AiryAi(t), t = - infinity..infinity) = exp((p)^(3)/3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Exp[(p)^(3)/3]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out
| [https://dlmf.nist.gov/9.10.E13 9.10.E13] || <math qid="Q2896">\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(p*t)*AiryAi(t), t = - infinity..infinity) = exp((p)^(3)/3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Exp[(p)^(3)/3]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.10.E14 9.10.E14] || [[Item:Q2897|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(t), t = 0..infinity) = exp(- (p)^(3)/3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/3)* GAMMA((5)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Exp[- (p)^(3)/3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/3)* Gamma[Divide[5,3]]])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.10.E14 9.10.E14] || <math qid="Q2897">\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(t), t = 0..infinity) = exp(- (p)^(3)/3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/3)* GAMMA((5)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Exp[- (p)^(3)/3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/3)* Gamma[Divide[5,3]]])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E15 9.10.E15] || [[Item:Q2898|<math>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(- t), t = 0..infinity) = (1)/(3)*exp((p)^(3)/3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9+.6037469539*I
| [https://dlmf.nist.gov/9.10.E15 9.10.E15] || <math qid="Q2898">\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryAi(- t), t = 0..infinity) = (1)/(3)*exp((p)^(3)/3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.1e-9+.6037469539*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.10.E16 9.10.E16] || [[Item:Q2899|<math>\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryBi(- t), t = 0..infinity) = (1)/(sqrt(3))*exp((p)^(3)/3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[3]]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5e-9-.1692833917*I
| [https://dlmf.nist.gov/9.10.E16 9.10.E16] || <math qid="Q2899">\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}</syntaxhighlight> || <math>\Re p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- p*t)*AiryBi(- t), t = 0..infinity) = (1)/(sqrt(3))*exp((p)^(3)/3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[3]]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 5]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5e-9-.1692833917*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out
Test Values: {p = 1/2-1/2*I*3^(1/2)}</syntaxhighlight><br></div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.10.E18 9.10.E18] || [[Item:Q2901|<math>\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{2}{3}\pi</math> || <syntaxhighlight lang=mathematica>AiryAi(z) = (3*(z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/(4*Pi)* int(((t)^(- 3/4)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[3*(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],4*Pi]* Integrate[Divide[(t)^(- 3/4)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out
| [https://dlmf.nist.gov/9.10.E18 9.10.E18] || <math qid="Q2901">\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{2}{3}\pi</math> || <syntaxhighlight lang=mathematica>AiryAi(z) = (3*(z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/(4*Pi)* int(((t)^(- 3/4)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[3*(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],4*Pi]* Integrate[Divide[(t)^(- 3/4)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 5] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] || [[Item:Q2902|<math>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>AiryAi(z) = ((z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/((2)^(7/2)* Pi)* int(((t)^(- 1/2)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],(2)^(7/2)* Pi]* Integrate[Divide[(t)^(- 1/2)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/9.10#Ex3 9.10#Ex3] || <math qid="Q2902">\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>AiryAi(z) = ((z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/((2)^(7/2)* Pi)* int(((t)^(- 1/2)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>AiryAi[z] == Divide[(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],(2)^(7/2)* Pi]* Integrate[Divide[(t)^(- 1/2)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Error || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.10.E20 9.10.E20] || [[Item:Q2905|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryAi(t), t = 0..v), v = 0..x) = x*int(AiryAi(t), t = 0..x)- diff( AiryAi(x), x$(1) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryAi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryAi[t], {t, 0, x}, GenerateConditions->None]- D[AiryAi[x], {x, 1}]+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/9.10.E20 9.10.E20] || <math qid="Q2905">\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryAi(t), t = 0..v), v = 0..x) = x*int(AiryAi(t), t = 0..x)- diff( AiryAi(x), x$(1) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryAi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryAi[t], {t, 0, x}, GenerateConditions->None]- D[AiryAi[x], {x, 1}]+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/9.10.E21 9.10.E21] || [[Item:Q2906|<math>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryBi(t), t = 0..v), v = 0..x) = x*int(AiryBi(t), t = 0..x)- diff( AiryBi(x), x$(1) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryBi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryBi[t], {t, 0, x}, GenerateConditions->None]- D[AiryBi[x], {x, 1}]+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/9.10.E21 9.10.E21] || <math qid="Q2906">\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(int(AiryBi(t), t = 0..v), v = 0..x) = x*int(AiryBi(t), t = 0..x)- diff( AiryBi(x), x$(1) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Integrate[AiryBi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryBi[t], {t, 0, x}, GenerateConditions->None]- D[AiryBi[x], {x, 1}]+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 12:21, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
9.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)}
\int_{z}^{\infty}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerGi'@{z}-\AiryAi'@{z}\ScorerGi@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryAi(t), t = z..infinity) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))))
Integrate[AiryAi[t], {t, z, Infinity}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerGi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerGi[z])
Failure Failure
Failed [7 / 7]
Result: -.3430999769-.7863536809e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .1173558541-.6113539683*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
9.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)}
\int_{-\infty}^{z}\AiryAi@{t}\diff{t} = \pi\left(\AiryAi@{z}\ScorerHi'@{z}-\AiryAi'@{z}\ScorerHi@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryAi(t), t = - infinity..z) = Pi*(AiryAi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryAi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))
Integrate[AiryAi[t], {t, - Infinity, z}, GenerateConditions->None] == Pi*(AiryAi[z]*D[ScorerHi[z], {z, 1}]- D[AiryAi[z], {z, 1}]*ScorerHi[z])
Failure Failure
Failed [7 / 7]
Result: .3430999769+.7863536803e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.1173558550+.6113539681*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
9.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}}
\int_{-\infty}^{z}\AiryBi@{t}\diff{t} = \int_{0}^{z}\AiryBi@{t}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryBi(t), t = - infinity..z) = int(AiryBi(t), t = 0..z)
Integrate[AiryBi[t], {t, - Infinity, z}, GenerateConditions->None] == Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
9.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\}
\int_{0}^{z}\AiryBi@{t}\diff{t} = \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryBi(t), t = 0..z) = Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) ))
Integrate[AiryBi[t], {t, 0, z}, GenerateConditions->None] == Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}])
Failure Failure
Failed [7 / 7]
Result: -.2028158445+.1550535689*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .5468682154-.3940689299*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
9.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)}
\pi\left(\AiryBi'@{z}\ScorerGi@{z}-\AiryBi@{z}\ScorerGi'@{z}\right)\\ = \pi\left(\AiryBi@{z}\ScorerHi'@{z}-\AiryBi'@{z}\ScorerHi@{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Pi*(diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z)))- AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = (z) .. infinity))+AiryAi(z)*(int(AiryBi(t), t = 0 .. (z))), z$(1) )) = Pi*(AiryBi(z)*diff( AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))), z$(1) )- diff( AiryBi(z), z$(1) )*AiryBi(z)*(int(AiryAi(t), t = -infinity .. (z)))-AiryAi(z)*(int(AiryBi(t), t = -infinity .. (z))))
Pi*(D[AiryBi[z], {z, 1}]*ScorerGi[z]- AiryBi[z]*D[ScorerGi[z], {z, 1}]) == Pi*(AiryBi[z]*D[ScorerHi[z], {z, 1}]- D[AiryBi[z], {z, 1}]*ScorerHi[z])
Failure Successful
Failed [7 / 7]
Result: .843931870+.115991466*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.9844521300+1.906824069*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
9.10#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}}
\int_{0}^{\infty}\AiryAi@{t}\diff{t} = \tfrac{1}{3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryAi(t), t = 0..infinity) = (1)/(3)
Integrate[AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]
Successful Successful - Successful [Tested: 1]
9.10#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}}
\int_{-\infty}^{0}\AiryAi@{t}\diff{t} = \tfrac{2}{3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryAi(t), t = - infinity..0) = (2)/(3)
Integrate[AiryAi[t], {t, - Infinity, 0}, GenerateConditions->None] == Divide[2,3]
Failure Successful Skip - No test values generated Successful [Tested: 1]
9.10.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0}
\int_{-\infty}^{0}\AiryBi@{t}\diff{t} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(AiryBi(t), t = - infinity..0) = 0
Integrate[AiryBi[t], {t, - Infinity, 0}, GenerateConditions->None] == 0
Successful Successful - Successful [Tested: 1]
9.10.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}}
\int_{-\infty}^{\infty}e^{pt}\AiryAi@{t}\diff{t} = e^{p^{3}/3}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Re p > 0}
int(exp(p*t)*AiryAi(t), t = - infinity..infinity) = exp((p)^(3)/3)
Integrate[Exp[p*t]*AiryAi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Exp[(p)^(3)/3]
Failure Aborted Successful [Tested: 5] Skipped - Because timed out
9.10.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)}
\int_{0}^{\infty}e^{-pt}\AiryAi@{t}\diff{t} = e^{-p^{3}/3}\left(\frac{1}{3}-\frac{p\genhyperF{1}{1}@{\tfrac{1}{3}}{\tfrac{4}{3}}{\tfrac{1}{3}p^{3}}}{3^{4/3}\EulerGamma@{\tfrac{4}{3}}}+\frac{p^{2}\genhyperF{1}{1}@{\tfrac{2}{3}}{\tfrac{5}{3}}{\tfrac{1}{3}p^{3}}}{3^{5/3}\EulerGamma@{\tfrac{5}{3}}}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(exp(- p*t)*AiryAi(t), t = 0..infinity) = exp(- (p)^(3)/3)*((1)/(3)-(p*hypergeom([(1)/(3)], [(4)/(3)], (1)/(3)*(p)^(3)))/((3)^(4/3)* GAMMA((4)/(3)))+((p)^(2)* hypergeom([(2)/(3)], [(5)/(3)], (1)/(3)*(p)^(3)))/((3)^(5/3)* GAMMA((5)/(3))))
Integrate[Exp[- p*t]*AiryAi[t], {t, 0, Infinity}, GenerateConditions->None] == Exp[- (p)^(3)/3]*(Divide[1,3]-Divide[p*HypergeometricPFQ[{Divide[1,3]}, {Divide[4,3]}, Divide[1,3]*(p)^(3)],(3)^(4/3)* Gamma[Divide[4,3]]]+Divide[(p)^(2)* HypergeometricPFQ[{Divide[2,3]}, {Divide[5,3]}, Divide[1,3]*(p)^(3)],(3)^(5/3)* Gamma[Divide[5,3]]])
Successful Successful - Successful [Tested: 1]
9.10.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}}
\int_{0}^{\infty}e^{-pt}\AiryAi@{-t}\diff{t} = {\frac{1}{3}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}+\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}\right)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Re p > 0}
int(exp(- p*t)*AiryAi(- t), t = 0..infinity) = (1)/(3)*exp((p)^(3)/3)*((GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3)))+(GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3))))
Integrate[Exp[- p*t]*AiryAi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,3]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]]+Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]])
Failure Aborted
Failed [1 / 5]
Result: -.1e-9+.6037469539*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}

Skipped - Because timed out
9.10.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}}
\int_{0}^{\infty}e^{-pt}\AiryBi@{-t}\diff{t} = {\frac{1}{\sqrt{3}}e^{p^{3}/3}\left(\frac{\incGamma@{\tfrac{2}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{2}{3}}}-\frac{\incGamma@{\tfrac{1}{3}}{\tfrac{1}{3}p^{3}}}{\EulerGamma@{\tfrac{1}{3}}}\right)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Re p > 0}
int(exp(- p*t)*AiryBi(- t), t = 0..infinity) = (1)/(sqrt(3))*exp((p)^(3)/3)*((GAMMA((2)/(3), (1)/(3)*(p)^(3)))/(GAMMA((2)/(3)))-(GAMMA((1)/(3), (1)/(3)*(p)^(3)))/(GAMMA((1)/(3))))
Integrate[Exp[- p*t]*AiryBi[- t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,Sqrt[3]]*Exp[(p)^(3)/3]*(Divide[Gamma[Divide[2,3], Divide[1,3]*(p)^(3)],Gamma[Divide[2,3]]]-Divide[Gamma[Divide[1,3], Divide[1,3]*(p)^(3)],Gamma[Divide[1,3]]])
Failure Aborted
Failed [1 / 5]
Result: -.5e-9-.1692833917*I
Test Values: {p = 1/2-1/2*I*3^(1/2)}

Skipped - Because timed out
9.10.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}}
\AiryAi@{z} = \frac{3z^{5/4}e^{-(2/3)z^{3/2}}}{4\pi}\*\int_{0}^{\infty}\frac{t^{-3/4}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\phase@@{z}| < \tfrac{2}{3}\pi}
AiryAi(z) = (3*(z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/(4*Pi)* int(((t)^(- 3/4)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)
AiryAi[z] == Divide[3*(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],4*Pi]* Integrate[Divide[(t)^(- 3/4)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 5] Skipped - Because timed out
9.10#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}}
\AiryAi@{z} = \frac{z^{5/4}e^{-(2/3)z^{3/2}}}{2^{7/2}\pi}\*\int_{0}^{\infty}\frac{t^{-1/2}e^{-(2/3)t^{3/2}}\AiryAi@{t}}{z^{3/2}+t^{3/2}}\diff{t}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
AiryAi(z) = ((z)^(5/4)* exp(-(2/3)*(z)^(3/2)))/((2)^(7/2)* Pi)* int(((t)^(- 1/2)* exp(-(2/3)*(t)^(3/2))*AiryAi(t))/((z)^(3/2)+ (t)^(3/2)), t = 0..infinity)
AiryAi[z] == Divide[(z)^(5/4)* Exp[-(2/3)*(z)^(3/2)],(2)^(7/2)* Pi]* Integrate[Divide[(t)^(- 1/2)* Exp[-(2/3)*(t)^(3/2)]*AiryAi[t],(z)^(3/2)+ (t)^(3/2)], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Error Skipped - Because timed out
9.10.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}}
\int_{0}^{x}\!\!\int_{0}^{v}\AiryAi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryAi@{t}\diff{t}-\AiryAi'@{x}+\AiryAi'@{0}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(int(AiryAi(t), t = 0..v), v = 0..x) = x*int(AiryAi(t), t = 0..x)- diff( AiryAi(x), x$(1) )+ subs( temp=0, diff( AiryAi(temp), temp$(1) ) )
Integrate[Integrate[AiryAi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryAi[t], {t, 0, x}, GenerateConditions->None]- D[AiryAi[x], {x, 1}]+ (D[AiryAi[temp], {temp, 1}]/.temp-> 0)
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
9.10.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}}
\int_{0}^{x}\!\!\int_{0}^{v}\AiryBi@{t}\diff{t}\diff{v} = x\int_{0}^{x}\AiryBi@{t}\diff{t}-\AiryBi'@{x}+\AiryBi'@{0}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(int(AiryBi(t), t = 0..v), v = 0..x) = x*int(AiryBi(t), t = 0..x)- diff( AiryBi(x), x$(1) )+ subs( temp=0, diff( AiryBi(temp), temp$(1) ) )
Integrate[Integrate[AiryBi[t], {t, 0, v}, GenerateConditions->None], {v, 0, x}, GenerateConditions->None] == x*Integrate[AiryBi[t], {t, 0, x}, GenerateConditions->None]- D[AiryBi[x], {x, 1}]+ (D[AiryBi[temp], {temp, 1}]/.temp-> 0)
Failure Failure Successful [Tested: 3] Successful [Tested: 3]