9.11: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/9.11.E1 9.11.E1] || [[Item:Q2908|<math>\deriv[3]{w}{z}-4z\deriv{w}{z}-2w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[3]{w}{z}-4z\deriv{w}{z}-2w = 0</syntaxhighlight> || <math>w = w_{1}w_{2}</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(3)])- 4*z*diff(w, z)- 2*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 3}]- 4*z*D[w, z]- 2*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.732050808-1.000000000*I
| [https://dlmf.nist.gov/9.11.E1 9.11.E1] || <math qid="Q2908">\deriv[3]{w}{z}-4z\deriv{w}{z}-2w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[3]{w}{z}-4z\deriv{w}{z}-2w = 0</syntaxhighlight> || <math>w = w_{1}w_{2}</math> || <syntaxhighlight lang=mathematica>diff(w, [z$(3)])- 4*z*diff(w, z)- 2*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 3}]- 4*z*D[w, z]- 2*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.732050808-1.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.732050808-1.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.732050808-1.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skip - No test values generated
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skip - No test values generated
|-  
|-  
| [https://dlmf.nist.gov/9.11.E2 9.11.E2] || [[Item:Q2909|<math>\Wronskian@{\AiryAi^{2}@{z},\AiryAi@{z}\AiryBi@{z},\AiryBi^{2}@{z}} = 2\pi^{-3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\AiryAi^{2}@{z},\AiryAi@{z}\AiryBi@{z},\AiryBi^{2}@{z}} = 2\pi^{-3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((AiryAi(z))^(2))*diff(AiryAi(z)*AiryBi(z), z)-diff((AiryAi(z))^(2), z)*(AiryAi(z)*AiryBi(z)) = 2*(Pi)^(- 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{(AiryAi[z])^(2), AiryAi[z]*AiryBi[z]}, z] == 2*(Pi)^(- 3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6075530626e-1-.7911780259e-2*I
| [https://dlmf.nist.gov/9.11.E2 9.11.E2] || <math qid="Q2909">\Wronskian@{\AiryAi^{2}@{z},\AiryAi@{z}\AiryBi@{z},\AiryBi^{2}@{z}} = 2\pi^{-3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Wronskian@{\AiryAi^{2}@{z},\AiryAi@{z}\AiryBi@{z},\AiryBi^{2}@{z}} = 2\pi^{-3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>((AiryAi(z))^(2))*diff(AiryAi(z)*AiryBi(z), z)-diff((AiryAi(z))^(2), z)*(AiryAi(z)*AiryBi(z)) = 2*(Pi)^(- 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Wronskian[{(AiryAi[z])^(2), AiryAi[z]*AiryBi[z]}, z] == 2*(Pi)^(- 3)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6075530626e-1-.7911780259e-2*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1529112816e-1-.8621001058e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .1529112816e-1-.8621001058e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.060755306279053636, -0.0079117802669642]
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.060755306279053636, -0.0079117802669642]
Line 24: Line 24:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/9.11.E3 9.11.E3] || [[Item:Q2910|<math>\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>(AiryAi(x))^(2) = (1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(AiryAi[x])^(2) == Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/9.11.E3 9.11.E3] || <math qid="Q2910">\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>(AiryAi(x))^(2) = (1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(AiryAi[x])^(2) == Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.11.E4 9.11.E4] || [[Item:Q2911|<math>\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(AiryAi(z))^(2)+ (AiryBi(z))^(2) = (1)/((Pi)^(3/2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(AiryAi[z])^(2)+ (AiryBi[z])^(2) == Divide[1,(Pi)^(3/2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.205225893+.8288376548*I
| [https://dlmf.nist.gov/9.11.E4 9.11.E4] || <math qid="Q2911">\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(AiryAi(z))^(2)+ (AiryBi(z))^(2) = (1)/((Pi)^(3/2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/2), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(AiryAi[z])^(2)+ (AiryBi[z])^(2) == Divide[1,(Pi)^(3/2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/2), {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.205225893+.8288376548*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.763924327-.1437296879*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.763924327-.1437296879*I
Test Values: {z = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
Test Values: {z = 1.5}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.11.E12 9.11.E12] || [[Item:Q2919|<math>\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/((AiryAi(z))^(2)), z) = Pi*(AiryBi(z))/(AiryAi(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,(AiryAi[z])^(2)], z, GenerateConditions->None] == Pi*Divide[AiryBi[z],AiryAi[z]]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 7]
| [https://dlmf.nist.gov/9.11.E12 9.11.E12] || <math qid="Q2919">\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/((AiryAi(z))^(2)), z) = Pi*(AiryBi(z))/(AiryAi(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,(AiryAi[z])^(2)], z, GenerateConditions->None] == Pi*Divide[AiryBi[z],AiryAi[z]]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/9.11.E13 9.11.E13] || [[Item:Q2920|<math>\int\frac{\diff{z}}{\AiryAi@{z}\AiryBi@{z}} = \pi\ln@{\frac{\AiryBi@{z}}{\AiryAi@{z}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{\AiryAi@{z}\AiryBi@{z}} = \pi\ln@{\frac{\AiryBi@{z}}{\AiryAi@{z}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(AiryAi(z)*AiryBi(z)), z) = Pi*ln((AiryBi(z))/(AiryAi(z)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,AiryAi[z]*AiryBi[z]], z, GenerateConditions->None] == Pi*Log[Divide[AiryBi[z],AiryAi[z]]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-5.779215712137658, -2.873897613994506], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
| [https://dlmf.nist.gov/9.11.E13 9.11.E13] || <math qid="Q2920">\int\frac{\diff{z}}{\AiryAi@{z}\AiryBi@{z}} = \pi\ln@{\frac{\AiryBi@{z}}{\AiryAi@{z}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{z}}{\AiryAi@{z}\AiryBi@{z}} = \pi\ln@{\frac{\AiryBi@{z}}{\AiryAi@{z}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(AiryAi(z)*AiryBi(z)), z) = Pi*ln((AiryBi(z))/(AiryAi(z)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,AiryAi[z]*AiryBi[z]], z, GenerateConditions->None] == Pi*Log[Divide[AiryBi[z],AiryAi[z]]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-5.779215712137658, -2.873897613994506], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.1485658721378681, -3.565476804713019], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.1485658721378681, -3.565476804713019], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/9.11.E14 9.11.E14] || [[Item:Q2921|<math>\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z) = (Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z, GenerateConditions->None] == Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.580056541145603, -0.03880964929600676], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
| [https://dlmf.nist.gov/9.11.E14 9.11.E14] || <math qid="Q2921">\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z) = (Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z, GenerateConditions->None] == Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-1.580056541145603, -0.03880964929600676], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9914863532591266, -1.6654177670843742], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.9914863532591266, -1.6654177670843742], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/9.11.E15 9.11.E15] || [[Item:Q2922|<math>\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{(\alpha)} > 0, \realpart@@{(\frac{1}{3}\alpha+\frac{5}{6})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity) = (2*GAMMA(alpha))/((Pi)^(1/2)* (12)^((2*alpha + 5)/6)* GAMMA((1)/(3)*alpha +(5)/(6)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}, GenerateConditions->None] == Divide[2*Gamma[\[Alpha]],(Pi)^(1/2)* (12)^((2*\[Alpha]+ 5)/6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/9.11.E15 9.11.E15] || <math qid="Q2922">\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}</syntaxhighlight> || <math>\realpart@@{\alpha} > 0, \realpart@@{(\alpha)} > 0, \realpart@@{(\frac{1}{3}\alpha+\frac{5}{6})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity) = (2*GAMMA(alpha))/((Pi)^(1/2)* (12)^((2*alpha + 5)/6)* GAMMA((1)/(3)*alpha +(5)/(6)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}, GenerateConditions->None] == Divide[2*Gamma[\[Alpha]],(Pi)^(1/2)* (12)^((2*\[Alpha]+ 5)/6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[α, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {Rule[α, 0.5]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/9.11.E16 9.11.E16] || [[Item:Q2923|<math>\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(3), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/9.11.E16 9.11.E16] || <math qid="Q2923">\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(3), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.11.E17 9.11.E17] || [[Item:Q2924|<math>\int_{-\infty}^{\infty}\AiryAi^{2}@{t}\AiryBi@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\sqrt{3}\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\AiryAi^{2}@{t}\AiryBi@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\sqrt{3}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(2)* AiryBi(t), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*sqrt(3)*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(2)* AiryBi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*Sqrt[3]*(Pi)^(2)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/9.11.E17 9.11.E17] || <math qid="Q2924">\int_{-\infty}^{\infty}\AiryAi^{2}@{t}\AiryBi@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\sqrt{3}\pi^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{-\infty}^{\infty}\AiryAi^{2}@{t}\AiryBi@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\sqrt{3}\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(2)* AiryBi(t), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*sqrt(3)*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(2)* AiryBi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*Sqrt[3]*(Pi)^(2)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/9.11.E18 9.11.E18] || [[Item:Q2925|<math>\int_{0}^{\infty}\AiryAi^{4}@{t}\diff{t} = \frac{\ln@@{3}}{24\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\AiryAi^{4}@{t}\diff{t} = \frac{\ln@@{3}}{24\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(4), t = 0..infinity) = (ln(3))/(24*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(4), {t, 0, Infinity}, GenerateConditions->None] == Divide[Log[3],24*(Pi)^(2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.11.E18 9.11.E18] || <math qid="Q2925">\int_{0}^{\infty}\AiryAi^{4}@{t}\diff{t} = \frac{\ln@@{3}}{24\pi^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\AiryAi^{4}@{t}\diff{t} = \frac{\ln@@{3}}{24\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((AiryAi(t))^(4), t = 0..infinity) = (ln(3))/(24*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(AiryAi[t])^(4), {t, 0, Infinity}, GenerateConditions->None] == Divide[Log[3],24*(Pi)^(2)]</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity) = int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || <math qid="Q2926">\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity) = int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || [[Item:Q2926|<math>\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity) = ((Pi)^(2))/(6)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),6]</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/9.11.E19 9.11.E19] || <math qid="Q2926">\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity) = ((Pi)^(2))/(6)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),6]</syntaxhighlight> || Failure || Failure || Successful [Tested: 0] || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 11:21, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
9.11.E1 d 3 w d z 3 - 4 z d w d z - 2 w = 0 derivative 𝑤 𝑧 3 4 𝑧 derivative 𝑤 𝑧 2 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{3}w}{{\mathrm{d}z}^{3}}-4z% \frac{\mathrm{d}w}{\mathrm{d}z}-2w=0}}
\deriv[3]{w}{z}-4z\deriv{w}{z}-2w = 0
w = w 1 w 2 𝑤 subscript 𝑤 1 subscript 𝑤 2 {\displaystyle{\displaystyle w=w_{1}w_{2}}}
diff(w, [z$(3)])- 4*z*diff(w, z)- 2*w = 0
D[w, {z, 3}]- 4*z*D[w, z]- 2*w == 0
Failure Failure
Failed [70 / 70]
Result: -1.732050808-1.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.732050808-1.000000000*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skip - No test values generated
9.11.E2 𝒲 { Ai 2 ( z ) , Ai ( z ) Bi ( z ) , Bi 2 ( z ) } = 2 π - 3 Wronskian Airy-Ai 2 𝑧 Airy-Ai 𝑧 Airy-Bi 𝑧 Airy-Bi 2 𝑧 2 superscript 𝜋 3 {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathrm{Ai}^{2}}\left(z\right),% \mathrm{Ai}\left(z\right)\mathrm{Bi}\left(z\right),{\mathrm{Bi}^{2}}\left(z% \right)\right\}=2\pi^{-3}}}
\Wronskian@{\AiryAi^{2}@{z},\AiryAi@{z}\AiryBi@{z},\AiryBi^{2}@{z}} = 2\pi^{-3}

((AiryAi(z))^(2))*diff(AiryAi(z)*AiryBi(z), z)-diff((AiryAi(z))^(2), z)*(AiryAi(z)*AiryBi(z)) = 2*(Pi)^(- 3)
Wronskian[{(AiryAi[z])^(2), AiryAi[z]*AiryBi[z]}, z] == 2*(Pi)^(- 3)
Failure Failure
Failed [7 / 7]
Result: -.6075530626e-1-.7911780259e-2*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .1529112816e-1-.8621001058e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[-0.060755306279053636, -0.0079117802669642]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.015291128133821968, -0.08621001051231339]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.11.E3 Ai 2 ( x ) = 1 4 π 3 0 J 0 ( 1 12 t 3 + x t ) t d t Airy-Ai 2 𝑥 1 4 𝜋 3 superscript subscript 0 Bessel-J 0 1 12 superscript 𝑡 3 𝑥 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle{\mathrm{Ai}^{2}}\left(x\right)=\frac{1}{4\pi\sqrt% {3}}\int_{0}^{\infty}J_{0}\left(\tfrac{1}{12}t^{3}+xt\right)t\mathrm{d}t}}
\AiryAi^{2}@{x} = \frac{1}{4\pi\sqrt{3}}\int_{0}^{\infty}\BesselJ{0}@{\tfrac{1}{12}t^{3}+xt}t\diff{t}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
(AiryAi(x))^(2) = (1)/(4*Pi*sqrt(3))*int(BesselJ(0, (1)/(12)*(t)^(3)+ x*t)*t, t = 0..infinity)
(AiryAi[x])^(2) == Divide[1,4*Pi*Sqrt[3]]*Integrate[BesselJ[0, Divide[1,12]*(t)^(3)+ x*t]*t, {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
9.11.E4 Ai 2 ( z ) + Bi 2 ( z ) = 1 π 3 / 2 0 exp ( z t - 1 12 t 3 ) t - 1 / 2 d t Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 1 superscript 𝜋 3 2 superscript subscript 0 𝑧 𝑡 1 12 superscript 𝑡 3 superscript 𝑡 1 2 𝑡 {\displaystyle{\displaystyle{\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}% \left(z\right)=\frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp\left(zt-\tfrac{1}{12}t% ^{3}\right)t^{-1/2}\mathrm{d}t}}
\AiryAi^{2}@{z}+\AiryBi^{2}@{z} = \frac{1}{\pi^{3/2}}\int_{0}^{\infty}\exp@{zt-\tfrac{1}{12}t^{3}}t^{-1/2}\diff{t}

(AiryAi(z))^(2)+ (AiryBi(z))^(2) = (1)/((Pi)^(3/2))*int(exp(z*t -(1)/(12)*(t)^(3))*(t)^(- 1/2), t = 0..infinity)
(AiryAi[z])^(2)+ (AiryBi[z])^(2) == Divide[1,(Pi)^(3/2)]*Integrate[Exp[z*t -Divide[1,12]*(t)^(3)]*(t)^(- 1/2), {t, 0, Infinity}, GenerateConditions->None]
Failure Successful
Failed [4 / 7]
Result: 1.205225893+.8288376548*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 3.763924327-.1437296879*I
Test Values: {z = 1.5}

... skip entries to safe data
Successful [Tested: 7]
9.11.E12 d z Ai 2 ( z ) = π Bi ( z ) Ai ( z ) 𝑧 Airy-Ai 2 𝑧 𝜋 Airy-Bi 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{{\mathrm{Ai}^{2}}\left(z% \right)}=\pi\frac{\mathrm{Bi}\left(z\right)}{\mathrm{Ai}\left(z\right)}}}
\int\frac{\diff{z}}{\AiryAi^{2}@{z}} = \pi\frac{\AiryBi@{z}}{\AiryAi@{z}}

int((1)/((AiryAi(z))^(2)), z) = Pi*(AiryBi(z))/(AiryAi(z))
Integrate[Divide[1,(AiryAi[z])^(2)], z, GenerateConditions->None] == Pi*Divide[AiryBi[z],AiryAi[z]]
Failure Successful Error Successful [Tested: 7]
9.11.E13 d z Ai ( z ) Bi ( z ) = π ln ( Bi ( z ) Ai ( z ) ) 𝑧 Airy-Ai 𝑧 Airy-Bi 𝑧 𝜋 Airy-Bi 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{\mathrm{Ai}\left(z\right)% \mathrm{Bi}\left(z\right)}=\pi\ln\left(\frac{\mathrm{Bi}\left(z\right)}{% \mathrm{Ai}\left(z\right)}\right)}}
\int\frac{\diff{z}}{\AiryAi@{z}\AiryBi@{z}} = \pi\ln@{\frac{\AiryBi@{z}}{\AiryAi@{z}}}

int((1)/(AiryAi(z)*AiryBi(z)), z) = Pi*ln((AiryBi(z))/(AiryAi(z)))
Integrate[Divide[1,AiryAi[z]*AiryBi[z]], z, GenerateConditions->None] == Pi*Log[Divide[AiryBi[z],AiryAi[z]]]
Failure Failure Error
Failed [7 / 7]
Result: Plus[Complex[-5.779215712137658, -2.873897613994506], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.1485658721378681, -3.565476804713019], Integrate[Times[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], -1]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.11.E14 Ai ( z ) Bi ( z ) ( Ai 2 ( z ) + Bi 2 ( z ) ) 2 d z = π 2 Bi 2 ( z ) Ai 2 ( z ) + Bi 2 ( z ) Airy-Ai 𝑧 Airy-Bi 𝑧 superscript Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 2 𝑧 𝜋 2 Airy-Bi 2 𝑧 Airy-Ai 2 𝑧 Airy-Bi 2 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{Ai}\left(z\right)\mathrm{Bi}% \left(z\right)}{\left({\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}\left(z% \right)\right)^{2}}\mathrm{d}z=\frac{\pi}{2}\frac{{\mathrm{Bi}^{2}}\left(z% \right)}{{\mathrm{Ai}^{2}}\left(z\right)+{\mathrm{Bi}^{2}}\left(z\right)}}}
\int\frac{\AiryAi@{z}\AiryBi@{z}}{\left(\AiryAi^{2}@{z}+\AiryBi^{2}@{z}\right)^{2}}\diff{z} = \frac{\pi}{2}\frac{\AiryBi^{2}@{z}}{\AiryAi^{2}@{z}+\AiryBi^{2}@{z}}

int((AiryAi(z)*AiryBi(z))/(((AiryAi(z))^(2)+ (AiryBi(z))^(2))^(2)), z) = (Pi)/(2)*((AiryBi(z))^(2))/((AiryAi(z))^(2)+ (AiryBi(z))^(2))
Integrate[Divide[AiryAi[z]*AiryBi[z],((AiryAi[z])^(2)+ (AiryBi[z])^(2))^(2)], z, GenerateConditions->None] == Divide[Pi,2]*Divide[(AiryBi[z])^(2),(AiryAi[z])^(2)+ (AiryBi[z])^(2)]
Failure Failure Error
Failed [7 / 7]
Result: Plus[Complex[-1.580056541145603, -0.03880964929600676], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.9914863532591266, -1.6654177670843742], Integrate[Times[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Power[Plus[Power[AiryAi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2], Power[AiryBi[Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], 2]], -2]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rule[GenerateConditions, None]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
9.11.E15 0 t α - 1 Ai 2 ( t ) d t = 2 Γ ( α ) π 1 / 2 12 ( 2 α + 5 ) / 6 Γ ( 1 3 α + 5 6 ) superscript subscript 0 superscript 𝑡 𝛼 1 Airy-Ai 2 𝑡 𝑡 2 Euler-Gamma 𝛼 superscript 𝜋 1 2 superscript 12 2 𝛼 5 6 Euler-Gamma 1 3 𝛼 5 6 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\alpha-1}{\mathrm{Ai}^{2}}% \left(t\right)\mathrm{d}t=\frac{2\Gamma\left(\alpha\right)}{\pi^{1/2}12^{(2% \alpha+5)/6}\Gamma\left(\frac{1}{3}\alpha+\frac{5}{6}\right)}}}
\int_{0}^{\infty}t^{\alpha-1}\AiryAi^{2}@{t}\diff{t} = \frac{2\EulerGamma@{\alpha}}{\pi^{1/2}12^{(2\alpha+5)/6}\EulerGamma@{\frac{1}{3}\alpha+\frac{5}{6}}}
α > 0 , ( α ) > 0 , ( 1 3 α + 5 6 ) > 0 formulae-sequence 𝛼 0 formulae-sequence 𝛼 0 1 3 𝛼 5 6 0 {\displaystyle{\displaystyle\Re\alpha>0,\Re(\alpha)>0,\Re(\frac{1}{3}\alpha+% \frac{5}{6})>0}}
int((t)^(alpha - 1)* (AiryAi(t))^(2), t = 0..infinity) = (2*GAMMA(alpha))/((Pi)^(1/2)* (12)^((2*alpha + 5)/6)* GAMMA((1)/(3)*alpha +(5)/(6)))
Integrate[(t)^(\[Alpha]- 1)* (AiryAi[t])^(2), {t, 0, Infinity}, GenerateConditions->None] == Divide[2*Gamma[\[Alpha]],(Pi)^(1/2)* (12)^((2*\[Alpha]+ 5)/6)* Gamma[Divide[1,3]*\[Alpha]+Divide[5,6]]]
Failure Failure Successful [Tested: 3]
Failed [1 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[α, 0.5]}

9.11.E16 - Ai 3 ( t ) d t = Γ 2 ( 1 3 ) 4 π 2 superscript subscript Airy-Ai 3 𝑡 𝑡 Euler-Gamma 2 1 3 4 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}{\mathrm{Ai}^{3}}\left(t% \right)\mathrm{d}t=\frac{{\Gamma^{2}}\left(\frac{1}{3}\right)}{4\pi^{2}}}}
\int_{-\infty}^{\infty}\AiryAi^{3}@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\pi^{2}}

int((AiryAi(t))^(3), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*(Pi)^(2))
Integrate[(AiryAi[t])^(3), {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*(Pi)^(2)]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
9.11.E17 - Ai 2 ( t ) Bi ( t ) d t = Γ 2 ( 1 3 ) 4 3 π 2 superscript subscript Airy-Ai 2 𝑡 Airy-Bi 𝑡 𝑡 Euler-Gamma 2 1 3 4 3 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}{\mathrm{Ai}^{2}}\left(t% \right)\mathrm{Bi}\left(t\right)\mathrm{d}t=\frac{{\Gamma^{2}}\left(\frac{1}{3% }\right)}{4\sqrt{3}\pi^{2}}}}
\int_{-\infty}^{\infty}\AiryAi^{2}@{t}\AiryBi@{t}\diff{t} = \frac{\EulerGamma^{2}@{\frac{1}{3}}}{4\sqrt{3}\pi^{2}}

int((AiryAi(t))^(2)* AiryBi(t), t = - infinity..infinity) = ((GAMMA((1)/(3)))^(2))/(4*sqrt(3)*(Pi)^(2))
Integrate[(AiryAi[t])^(2)* AiryBi[t], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Gamma[Divide[1,3]])^(2),4*Sqrt[3]*(Pi)^(2)]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
9.11.E18 0 Ai 4 ( t ) d t = ln 3 24 π 2 superscript subscript 0 Airy-Ai 4 𝑡 𝑡 3 24 superscript 𝜋 2 {\displaystyle{\displaystyle\int_{0}^{\infty}{\mathrm{Ai}^{4}}\left(t\right)% \mathrm{d}t=\frac{\ln 3}{24\pi^{2}}}}
\int_{0}^{\infty}\AiryAi^{4}@{t}\diff{t} = \frac{\ln@@{3}}{24\pi^{2}}

int((AiryAi(t))^(4), t = 0..infinity) = (ln(3))/(24*(Pi)^(2))
Integrate[(AiryAi[t])^(4), {t, 0, Infinity}, GenerateConditions->None] == Divide[Log[3],24*(Pi)^(2)]
Failure Failure Successful [Tested: 0] Successful [Tested: 1]
9.11.E19 0 d t Ai 2 ( t ) + Bi 2 ( t ) = 0 t d t Ai 2 ( t ) + Bi 2 ( t ) superscript subscript 0 𝑡 Airy-Ai 2 𝑡 Airy-Bi 2 𝑡 superscript subscript 0 𝑡 𝑡 diffop Airy-Ai 1 2 𝑡 diffop Airy-Bi 1 2 𝑡 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\mathrm{d}t}{{\mathrm{Ai}^{% 2}}\left(t\right)+{\mathrm{Bi}^{2}}\left(t\right)}=\int_{0}^{\infty}\frac{t% \mathrm{d}t}{{\mathrm{Ai}'^{2}}\left(t\right)+{\mathrm{Bi}'^{2}}\left(t\right)% }}}
\int_{0}^{\infty}\frac{\diff{t}}{\AiryAi^{2}@{t}+\AiryBi^{2}@{t}} = \int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}}

int((1)/((AiryAi(t))^(2)+ (AiryBi(t))^(2)), t = 0..infinity) = int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity)
Integrate[Divide[1,(AiryAi[t])^(2)+ (AiryBi[t])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 0] Successful [Tested: 1]
9.11.E19 0 t d t Ai 2 ( t ) + Bi 2 ( t ) = π 2 6 superscript subscript 0 𝑡 𝑡 diffop Airy-Ai 1 2 𝑡 diffop Airy-Bi 1 2 𝑡 superscript 𝜋 2 6 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t\mathrm{d}t}{{\mathrm{Ai}'% ^{2}}\left(t\right)+{\mathrm{Bi}'^{2}}\left(t\right)}=\frac{\pi^{2}}{6}}}
\int_{0}^{\infty}\frac{t\diff{t}}{\AiryAi'^{2}@{t}+\AiryBi'^{2}@{t}} = \frac{\pi^{2}}{6}

int((t)/((diff( AiryAi(t), t$(1) ))^(2)+ (diff( AiryBi(t), t$(1) ))^(2)), t = 0..infinity) = ((Pi)^(2))/(6)
Integrate[Divide[t,(D[AiryAi[t], {t, 1}])^(2)+ (D[AiryBi[t], {t, 1}])^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),6]
Failure Failure Successful [Tested: 0] Successful [Tested: 1]