9.13: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/9.13#Ex7 9.13#Ex7] | | | [https://dlmf.nist.gov/9.13#Ex7 9.13#Ex7] || <math qid="Q2976">m = n+2</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>m = n+2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">m = n + 2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">m == n + 2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/9.13#Ex8 9.13#Ex8] | | | [https://dlmf.nist.gov/9.13#Ex8 9.13#Ex8] || <math qid="Q2977">t = (\tfrac{1}{2}m)^{-2/m}z</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>t = (\tfrac{1}{2}m)^{-2/m}z</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t = ((1)/(2)*m)^(- 2/m)* z</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">t == (Divide[1,2]*m)^(- 2/m)* z</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.13.E20 9.13.E20] | | | [https://dlmf.nist.gov/9.13.E20 9.13.E20] || <math qid="Q2983">U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U[1](x , alpha) = (1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[U, 1][x , \[Alpha]] == Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.13.E21 9.13.E21] | | | [https://dlmf.nist.gov/9.13.E21 9.13.E21] || <math qid="Q2984">U_{2}(x,\alpha) = (\alpha+2)^{1/(\alpha+2)}\*\EulerGamma@{\frac{\alpha+3}{\alpha+2}}x^{1/2}\BesselJ{1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U_{2}(x,\alpha) = (\alpha+2)^{1/(\alpha+2)}\*\EulerGamma@{\frac{\alpha+3}{\alpha+2}}x^{1/2}\BesselJ{1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U[2](x , alpha) = (alpha + 2)^(1/(alpha + 2))* GAMMA((alpha + 3)/(alpha + 2))*(x)^(1/2)* BesselJ(1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[U, 2][x , \[Alpha]] == (\[Alpha]+ 2)^(1/(\[Alpha]+ 2))* Gamma[Divide[\[Alpha]+ 3,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/9.13#Ex9 9.13#Ex9] | | | [https://dlmf.nist.gov/9.13#Ex9 9.13#Ex9] || <math qid="Q2985">\alpha = m-2</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha = m-2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha = m - 2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Alpha] == m - 2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/9.13#Ex10 9.13#Ex10] | | | [https://dlmf.nist.gov/9.13#Ex10 9.13#Ex10] || <math qid="Q2986">x = (m/2)^{2/m}t</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x = (m/2)^{2/m}t</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x = (m/2)^(2/m)* t</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x == (m/2)^(2/m)* t</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.13.E23 9.13.E23] | | | [https://dlmf.nist.gov/9.13.E23 9.13.E23] || <math qid="Q2987">U_{1}(x,\alpha) = \frac{\pi^{1/2}}{2^{(m+2)/(2m)}\EulerGamma@{1/m}}\left(W_{m}(t)+W_{m}(-t)\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U_{1}(x,\alpha) = \frac{\pi^{1/2}}{2^{(m+2)/(2m)}\EulerGamma@{1/m}}\left(W_{m}(t)+W_{m}(-t)\right)</syntaxhighlight> || <math>\realpart@@{(1/m)} > 0</math> || <syntaxhighlight lang=mathematica>U[1](x , alpha) = ((Pi)^(1/2))/((2)^((m + 2)/(2*m))* GAMMA(1/m))*(W[m](t)+ W[m](- t))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[U, 1][x , \[Alpha]] == Divide[(Pi)^(1/2),(2)^((m + 2)/(2*m))* Gamma[1/m]]*(Subscript[W, m][t]+ Subscript[W, m][- t])</syntaxhighlight> || Failure || Failure || Error || Error | ||
|- | |- | ||
| [https://dlmf.nist.gov/9.13.E24 9.13.E24] | | | [https://dlmf.nist.gov/9.13.E24 9.13.E24] || <math qid="Q2988">U_{2}(x,\alpha) = \frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/(2m)}\EulerGamma@{-1/m}}\left(W_{m}(t){-}W_{m}(-t)\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U_{2}(x,\alpha) = \frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/(2m)}\EulerGamma@{-1/m}}\left(W_{m}(t){-}W_{m}(-t)\right)</syntaxhighlight> || <math>\realpart@@{(-1/m)} > 0</math> || <syntaxhighlight lang=mathematica>U[2](x , alpha) = ((Pi)^(1/2)* (m)^(2/m))/((2)^((m + 2)/(2*m))* GAMMA(- 1/m))*(W[m](t)- W[m](- t))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[U, 2][x , \[Alpha]] == Divide[(Pi)^(1/2)* (m)^(2/m),(2)^((m + 2)/(2*m))* Gamma[- 1/m]]*(Subscript[W, m][t]- Subscript[W, m][- t])</syntaxhighlight> || Failure || Failure || Error || Error | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:21, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
9.13#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m = n+2}
m = n+2 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | m = n + 2 |
m == n + 2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
9.13#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle t = (\tfrac{1}{2}m)^{-2/m}z}
t = (\tfrac{1}{2}m)^{-2/m}z |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | t = ((1)/(2)*m)^(- 2/m)* z |
t == (Divide[1,2]*m)^(- 2/m)* z |
Skipped - no semantic math | Skipped - no semantic math | - | - |
9.13.E20 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}}
U_{1}(x,\alpha) = \frac{1}{(\alpha+2)^{1/(\alpha+2)}}\*\EulerGamma@{\frac{\alpha+1}{\alpha+2}}x^{1/2}\BesselJ{-1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | U[1](x , alpha) = (1)/((alpha + 2)^(1/(alpha + 2)))* GAMMA((alpha + 1)/(alpha + 2))*(x)^(1/2)* BesselJ(- 1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))
|
Subscript[U, 1][x , \[Alpha]] == Divide[1,(\[Alpha]+ 2)^(1/(\[Alpha]+ 2))]* Gamma[Divide[\[Alpha]+ 1,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[- 1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]
|
Failure | Failure | Error | Error |
9.13.E21 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{2}(x,\alpha) = (\alpha+2)^{1/(\alpha+2)}\*\EulerGamma@{\frac{\alpha+3}{\alpha+2}}x^{1/2}\BesselJ{1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}}}
U_{2}(x,\alpha) = (\alpha+2)^{1/(\alpha+2)}\*\EulerGamma@{\frac{\alpha+3}{\alpha+2}}x^{1/2}\BesselJ{1/(\alpha+2)}@{\frac{2}{\alpha+2}x^{(\alpha+2)/2}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | U[2](x , alpha) = (alpha + 2)^(1/(alpha + 2))* GAMMA((alpha + 3)/(alpha + 2))*(x)^(1/2)* BesselJ(1/(alpha + 2), (2)/(alpha + 2)*(x)^((alpha + 2)/2))
|
Subscript[U, 2][x , \[Alpha]] == (\[Alpha]+ 2)^(1/(\[Alpha]+ 2))* Gamma[Divide[\[Alpha]+ 3,\[Alpha]+ 2]]*(x)^(1/2)* BesselJ[1/(\[Alpha]+ 2), Divide[2,\[Alpha]+ 2]*(x)^((\[Alpha]+ 2)/2)]
|
Failure | Failure | Error | Error |
9.13#Ex9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = m-2}
\alpha = m-2 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | alpha = m - 2 |
\[Alpha] == m - 2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
9.13#Ex10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = (m/2)^{2/m}t}
x = (m/2)^{2/m}t |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | x = (m/2)^(2/m)* t |
x == (m/2)^(2/m)* t |
Skipped - no semantic math | Skipped - no semantic math | - | - |
9.13.E23 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{1}(x,\alpha) = \frac{\pi^{1/2}}{2^{(m+2)/(2m)}\EulerGamma@{1/m}}\left(W_{m}(t)+W_{m}(-t)\right)}
U_{1}(x,\alpha) = \frac{\pi^{1/2}}{2^{(m+2)/(2m)}\EulerGamma@{1/m}}\left(W_{m}(t)+W_{m}(-t)\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1/m)} > 0} | U[1](x , alpha) = ((Pi)^(1/2))/((2)^((m + 2)/(2*m))* GAMMA(1/m))*(W[m](t)+ W[m](- t))
|
Subscript[U, 1][x , \[Alpha]] == Divide[(Pi)^(1/2),(2)^((m + 2)/(2*m))* Gamma[1/m]]*(Subscript[W, m][t]+ Subscript[W, m][- t])
|
Failure | Failure | Error | Error |
9.13.E24 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle U_{2}(x,\alpha) = \frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/(2m)}\EulerGamma@{-1/m}}\left(W_{m}(t){-}W_{m}(-t)\right)}
U_{2}(x,\alpha) = \frac{\pi^{1/2}m^{2/m}}{2^{(m+2)/(2m)}\EulerGamma@{-1/m}}\left(W_{m}(t){-}W_{m}(-t)\right) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(-1/m)} > 0} | U[2](x , alpha) = ((Pi)^(1/2)* (m)^(2/m))/((2)^((m + 2)/(2*m))* GAMMA(- 1/m))*(W[m](t)- W[m](- t))
|
Subscript[U, 2][x , \[Alpha]] == Divide[(Pi)^(1/2)* (m)^(2/m),(2)^((m + 2)/(2*m))* Gamma[- 1/m]]*(Subscript[W, m][t]- Subscript[W, m][- t])
|
Failure | Failure | Error | Error |