12.15: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/12.15.E1 12.15.E1] || [[Item:Q4281|<math>\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(\[Nu]+ \[Lambda]^(- 1)- \[Lambda]^(- 2)* (z)^\[Lambda])*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7322275248+.9199723429*I
| [https://dlmf.nist.gov/12.15.E1 12.15.E1] || <math qid="Q4281">\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {z, 2}]+(\[Nu]+ \[Lambda]^(- 1)- \[Lambda]^(- 2)* (z)^\[Lambda])*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7322275248+.9199723429*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.402820433+.5288298490*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.402820433+.5288298490*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7322275239543282, 0.91997234266967]
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7322275239543282, 0.91997234266967]

Latest revision as of 11:31, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.15.E1 d 2 w d z 2 + ( ν + λ - 1 - λ - 2 z λ ) w = 0 derivative 𝑤 𝑧 2 𝜈 superscript 𝜆 1 superscript 𝜆 2 superscript 𝑧 𝜆 𝑤 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(% \nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w=0}}
\deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0

diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))*w = 0
D[w, {z, 2}]+(\[Nu]+ \[Lambda]^(- 1)- \[Lambda]^(- 2)* (z)^\[Lambda])*w == 0
Failure Failure
Failed [300 / 300]
Result: .7322275248+.9199723429*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.402820433+.5288298490*I
Test Values: {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.7322275239543282, 0.91997234266967]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6337978798301105, 0.5539469388852316]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data