12.17: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/12.17.E4 12.17.E4] | | | [https://dlmf.nist.gov/12.17.E4 12.17.E4] || <math qid="Q4287">\frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/((xi)^(2)+ (eta)^(2))*(diff(w, [xi$(2)])+ diff(w, [eta$(2)]))+ diff(w, [zeta$(2)])+ (k)^(2)* w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,\[Xi]^(2)+ \[Eta]^(2)]*(D[w, {\[Xi], 2}]+ D[w, {\[Eta], 2}])+ D[w, {\[Zeta], 2}]+ (k)^(2)* w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8660254040+.5000000000*I | ||
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.464101616+2.*I | Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.464101616+2.*I | ||
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8660254037844387, 0.49999999999999994] | Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8660254037844387, 0.49999999999999994] |
Latest revision as of 11:31, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
12.17.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0}
\frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (1)/((xi)^(2)+ (eta)^(2))*(diff(w, [xi$(2)])+ diff(w, [eta$(2)]))+ diff(w, [zeta$(2)])+ (k)^(2)* w = 0
|
Divide[1,\[Xi]^(2)+ \[Eta]^(2)]*(D[w, {\[Xi], 2}]+ D[w, {\[Eta], 2}])+ D[w, {\[Zeta], 2}]+ (k)^(2)* w == 0
|
Failure | Failure | Failed [300 / 300] Result: .8660254040+.5000000000*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 1}
Result: 3.464101616+2.*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[3.464101615137755, 1.9999999999999998]
Test Values: {Rule[k, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |