13.18: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/13.18.E1 13.18.E1] || [[Item:Q4570|<math>\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(0, (1)/(2), 2*z) = 2*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, Divide[1,2], 2*z] == 2*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/13.18.E1 13.18.E1] || <math qid="Q4570">\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(0, (1)/(2), 2*z) = 2*sinh(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, Divide[1,2], 2*z] == 2*Sinh[z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, kappa -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || <math qid="Q4571">\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, kappa -(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, - kappa +(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || <math qid="Q4571">\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, - kappa +(1)/(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || [[Item:Q4571|<math>\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, - kappa +(1)/(2), z) = exp(-(1)/(2)*z)*(z)^(kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] == Exp[-Divide[1,2]*z]*(z)^\[Kappa]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.18.E2 13.18.E2] || <math qid="Q4571">\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(kappa, - kappa +(1)/(2), z) = exp(-(1)/(2)*z)*(z)^(kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] == Exp[-Divide[1,2]*z]*(z)^\[Kappa]</syntaxhighlight> || Failure || Successful || Successful [Tested: 70] || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E3 13.18.E3] || [[Item:Q4572|<math>\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, - kappa -(1)/(2), z) = exp((1)/(2)*z)*(z)^(- kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z] == Exp[Divide[1,2]*z]*(z)^(- \[Kappa])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.012581208495203278, -0.029801099144953658]
| [https://dlmf.nist.gov/13.18.E3 13.18.E3] || <math qid="Q4572">\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(kappa, - kappa -(1)/(2), z) = exp((1)/(2)*z)*(z)^(- kappa)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z] == Exp[Divide[1,2]*z]*(z)^(- \[Kappa])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [20 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.012581208495203278, -0.029801099144953658]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.32783156414330006, -0.2917810845255237]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.32783156414330006, -0.2917810845255237]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E4 13.18.E4] || [[Item:Q4573|<math>\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</syntaxhighlight> || <math>\realpart@@{(2\mu)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(mu -(1)/(2), mu, z) = 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Mu]-Divide[1,2], \[Mu], z] == 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 35]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5507089801-1.429327526*I
| [https://dlmf.nist.gov/13.18.E4 13.18.E4] || <math qid="Q4573">\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}</syntaxhighlight> || <math>\realpart@@{(2\mu)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(mu -(1)/(2), mu, z) = 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[\[Mu]-Divide[1,2], \[Mu], z] == 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [35 / 35]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.5507089801-1.429327526*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.178955063-1.073512810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.178955063-1.073512810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 35]
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 35]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E5 13.18.E5] || [[Item:Q4574|<math>\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(mu -(1)/(2), mu, z) = exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Mu]-Divide[1,2], \[Mu], z] == Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.18.E5 13.18.E5] || <math qid="Q4574">\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(mu -(1)/(2), mu, z) = exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[\[Mu]-Divide[1,2], \[Mu], z] == Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E6 13.18.E6] || [[Item:Q4575|<math>\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(4), (1)/(4), (z)^(2)) = (1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)] == Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7978557562-.9869289445*I
| [https://dlmf.nist.gov/13.18.E6 13.18.E6] || <math qid="Q4575">\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(4), (1)/(4), (z)^(2)) = (1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)] == Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .7978557562-.9869289445*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.482664004+.2744150982*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.482664004+.2744150982*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7978557563768727, -0.986928944338508]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.7978557563768727, -0.986928944338508]
Line 38: Line 38:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || [[Item:Q4576|<math>\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), +(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || <math qid="Q4576">\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), +(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9283174154667808, 0.050236864945780724]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.9283174154667808, 0.050236864945780724]
Line 44: Line 44:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || [[Item:Q4576|<math>\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), -(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I
| [https://dlmf.nist.gov/13.18.E7 13.18.E7] || <math qid="Q4576">\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(-(1)/(4), -(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.928317415466781, 0.05023686494578061]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.928317415466781, 0.05023686494578061]
Line 50: Line 50:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E8 13.18.E8] || [[Item:Q4577|<math>\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(0, nu, 2*z) = (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, \[Nu], 2*z] == (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8586367168171446, -0.6707313588072118]
| [https://dlmf.nist.gov/13.18.E8 13.18.E8] || <math qid="Q4577">\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(0, nu, 2*z) = (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[0, \[Nu], 2*z] == (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 56]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8586367168171446, -0.6707313588072118]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.33759646322286985, -0.8589803343001376]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.33759646322286985, -0.8589803343001376]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E9 13.18.E9] || [[Item:Q4578|<math>\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, nu, 2*z) = sqrt((2*z)/(Pi))*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, \[Nu], 2*z] == Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/13.18.E9 13.18.E9] || <math qid="Q4578">\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, nu, 2*z) = sqrt((2*z)/(Pi))*BesselK(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, \[Nu], 2*z] == Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E10 13.18.E10] || [[Item:Q4579|<math>\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2))) = 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])] == 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.246840478+.5335590044*I
| [https://dlmf.nist.gov/13.18.E10 13.18.E10] || <math qid="Q4579">\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2))) = 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])] == 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.246840478+.5335590044*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.24684047859323988, 0.533559004293784]
Test Values: {z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.24684047859323988, 0.533559004293784]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E12 13.18.E12] || [[Item:Q4581|<math>\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4546011384-.8349579092*I
| [https://dlmf.nist.gov/13.18.E12 13.18.E12] || <math qid="Q4581">\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4546011384-.8349579092*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .58169427e-2+1.789104086*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .58169427e-2+1.789104086*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.454601138107828, -0.8349579095614801]
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [8 / 28]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.454601138107828, -0.8349579095614801]
Line 66: Line 66:
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E13 13.18.E13] || [[Item:Q4582|<math>\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3997621251-.6252084121*I
| [https://dlmf.nist.gov/13.18.E13 13.18.E13] || <math qid="Q4582">\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)</syntaxhighlight> || <math>\realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0</math> || <syntaxhighlight lang=mathematica>WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3997621251-.6252084121*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9306149059+.2046923958*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9306149059+.2046923958*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3997621252402044, -0.6252084117529283]
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3997621252402044, -0.6252084117529283]
Line 72: Line 72:
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E14 13.18.E14] || [[Item:Q4583|<math>\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.741276300-.776142297*I
| [https://dlmf.nist.gov/13.18.E14 13.18.E14] || <math qid="Q4583">\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 4.741276300-.776142297*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 9.155588595+2.115036937*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 9.155588595+2.115036937*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.741276296912009, -0.7761422976118018]
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[4.741276296912009, -0.7761422976118018]
Line 78: Line 78:
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E15 13.18.E15] || [[Item:Q4584|<math>\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.634248102+.148339259*I
| [https://dlmf.nist.gov/13.18.E15 13.18.E15] || <math qid="Q4584">\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.634248102+.148339259*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.481689250+1.400565410*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.481689250+1.400565410*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.6342480998741933, 0.14833925882834587]
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.6342480998741933, 0.14833925882834587]
Line 84: Line 84:
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E16 13.18.E16] || [[Item:Q4585|<math>\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2)) = (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)] == (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.704303716-.6267307130*I
| [https://dlmf.nist.gov/13.18.E16 13.18.E16] || <math qid="Q4585">\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2)) = (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)] == (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.704303716-.6267307130*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.370638149+.3880711488*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.370638149+.3880711488*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7043037156649337, -0.6267307126437623]
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.7043037156649337, -0.6267307126437623]
Line 90: Line 90:
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || [[Item:Q4586|<math>\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 63] || Successful [Tested: 63]
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || <math qid="Q4586">\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 63] || Successful [Tested: 63]
|-  
|-  
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || [[Item:Q4586|<math>(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* factorial(n)*exp(-(1)/(2)*z)*(z)^((1)/(2)*alpha +(1)/(2))* LaguerreL(n, alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* (n)!*Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*\[Alpha]+Divide[1,2])* LaguerreL[n, \[Alpha], z]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 63]
| [https://dlmf.nist.gov/13.18.E17 13.18.E17] || <math qid="Q4586">(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* factorial(n)*exp(-(1)/(2)*z)*(z)^((1)/(2)*alpha +(1)/(2))* LaguerreL(n, alpha, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* (n)!*Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*\[Alpha]+Divide[1,2])* LaguerreL[n, \[Alpha], z]</syntaxhighlight> || Missing Macro Error || Successful || Skip - symbolical successful subtest || Successful [Tested: 63]
|}
|}
</div>
</div>

Latest revision as of 12:34, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.18.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}}
\WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM(0, (1)/(2), 2*z) = 2*sinh(z)
WhittakerM[0, Divide[1,2], 2*z] == 2*Sinh[z]
Successful Successful - Successful [Tested: 7]
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}}
\WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, kappa -(1)/(2), z)
WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}}
\WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(kappa, kappa -(1)/(2), z) = WhittakerW(kappa, - kappa +(1)/(2), z)
WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] == WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}}
\WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(kappa, - kappa +(1)/(2), z) = exp(-(1)/(2)*z)*(z)^(kappa)
WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] == Exp[-Divide[1,2]*z]*(z)^\[Kappa]
Failure Successful Successful [Tested: 70] Successful [Tested: 70]
13.18.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}}
\WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM(kappa, - kappa -(1)/(2), z) = exp((1)/(2)*z)*(z)^(- kappa)
WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z] == Exp[Divide[1,2]*z]*(z)^(- \[Kappa])
Successful Successful -
Failed [20 / 70]
Result: Complex[-0.012581208495203278, -0.029801099144953658]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 1.5]}

Result: Complex[-0.32783156414330006, -0.2917810845255237]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[κ, 0.5]}

... skip entries to safe data
13.18.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}}
\WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(2\mu)} > 0}
WhittakerM(mu -(1)/(2), mu, z) = 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z)
WhittakerM[\[Mu]-Divide[1,2], \[Mu], z] == 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z]
Failure Successful
Failed [35 / 35]
Result: -.5507089801-1.429327526*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -2.178955063-1.073512810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 35]
13.18.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}}
\WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(mu -(1)/(2), mu, z) = exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z)
WhittakerW[\[Mu]-Divide[1,2], \[Mu], z] == Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z]
Successful Successful - Successful [Tested: 70]
13.18.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}}
\WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM(-(1)/(4), (1)/(4), (z)^(2)) = (1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z)
WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)] == Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z]
Failure Failure
Failed [2 / 7]
Result: .7978557562-.9869289445*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 1.482664004+.2744150982*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.7978557563768727, -0.986928944338508]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[1.4826640039189691, 0.2744150979001404]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}}
\WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(-(1)/(4), +(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)
WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]
Failure Failure
Failed [2 / 7]
Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-1.9283174154667808, 0.050236864945780724]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-2.6741685713500765, 2.656547698651725]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}}
\WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(-(1)/(4), -(1)/(4), (z)^(2)) = exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z)
WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)] == Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z]
Failure Failure
Failed [2 / 7]
Result: -1.928317415+.502368653e-1*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -2.674168572+2.656547698*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-1.928317415466781, 0.05023686494578061]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-2.674168571350077, 2.6565476986517247]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.18.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}}
\WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+\nu)} > 0, \realpart@@{(\nu+k+1)} > 0}
WhittakerM(0, nu, 2*z) = (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z)
WhittakerM[0, \[Nu], 2*z] == (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z]
Successful Successful -
Failed [7 / 56]
Result: Complex[-0.8586367168171446, -0.6707313588072118]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}

Result: Complex[0.33759646322286985, -0.8589803343001376]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}

... skip entries to safe data
13.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}}
\WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(0, nu, 2*z) = sqrt((2*z)/(Pi))*BesselK(nu, z)
WhittakerW[0, \[Nu], 2*z] == Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
13.18.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}}
\WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2))) = 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z)
WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])] == 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z]
Failure Failure
Failed [1 / 7]
Result: -.246840478+.5335590044*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [1 / 7]
Result: Complex[-0.24684047859323988, 0.533559004293784]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

13.18.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)}
\WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\tfrac{1}{2}a+\tfrac{3}{4})} > 0}
WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z))
WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a), - z])
Failure Failure
Failed [8 / 28]
Result: -.4546011384-.8349579092*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}

Result: .58169427e-2+1.789104086*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [8 / 28]
Result: Complex[-0.454601138107828, -0.8349579095614801]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.005816942543956816, 1.7891040854776739]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
13.18.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)}
\WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\tfrac{1}{2}a+\tfrac{1}{4})} > 0}
WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2)) = (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z))
WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)] == (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[- 1/2 -(a), - z]- ParabolicCylinderD[- 1/2 -(a), z])
Failure Failure
Failed [6 / 21]
Result: .3997621251-.6252084121*I
Test Values: {a = 3/2, z = -1/2+1/2*I*3^(1/2)}

Result: .9306149059+.2046923958*I
Test Values: {a = 3/2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 21]
Result: Complex[0.3997621252402044, -0.6252084117529283]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.9306149056064967, 0.20469239560568858]
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
13.18.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}}
\WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z)
WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z]
Failure Failure
Failed [6 / 21]
Result: 4.741276300-.776142297*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}

Result: 9.155588595+2.115036937*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}

... skip entries to safe data
Failed [6 / 21]
Result: Complex[4.741276296912009, -0.7761422976118018]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[9.15558858680754, 2.115036935310196]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
13.18.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}}
\WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2)) = (- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z)
WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)] == (- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z]
Failure Failure
Failed [6 / 21]
Result: 2.634248102+.148339259*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}

Result: 3.481689250+1.400565410*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}

... skip entries to safe data
Failed [6 / 21]
Result: Complex[2.6342480998741933, 0.14833925882834587]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[3.4816892469231746, 1.4005654089276338]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
13.18.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}}
\WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2)) = (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z)
WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)] == (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z]
Failure Failure
Failed [6 / 21]
Result: 1.704303716-.6267307130*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}

Result: -2.370638149+.3880711488*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}

... skip entries to safe data
Failed [6 / 21]
Result: Complex[1.7043037156649337, -0.6267307126437623]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-2.370638148456005, 0.388071148805901]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
13.18.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}}
\WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)
WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]
Failure Failure Successful [Tested: 63] Successful [Tested: 63]
13.18.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}}
(-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}n!e^{-\frac{1}{2}z}z^{\frac{1}{2}\alpha+\frac{1}{2}}\LaguerrepolyL[\alpha]{n}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) = (- 1)^(n)* factorial(n)*exp(-(1)/(2)*z)*(z)^((1)/(2)*alpha +(1)/(2))* LaguerreL(n, alpha, z)
(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] == (- 1)^(n)* (n)!*Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*\[Alpha]+Divide[1,2])* LaguerreL[n, \[Alpha], z]
Missing Macro Error Successful Skip - symbolical successful subtest Successful [Tested: 63]