19.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4#Ex1 19.4#Ex1] | | | [https://dlmf.nist.gov/19.4#Ex1 19.4#Ex1] || <math qid="Q6119">\deriv{\compellintKk@{k}}{k} = \frac{\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}}{k{k^{\prime}}^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{\compellintKk@{k}}{k} = \frac{\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}}{k{k^{\prime}}^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticK(k), k) = (EllipticE(k)-1 - (k)^(2)*EllipticK(k))/(k*1 - (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticK[(k)^2], k] == Divide[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2],k*1 - (k)^(2)]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.4717549813624253, 3.1435959698369205] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.4717549813624253, 3.1435959698369205] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4#Ex2 19.4#Ex2] | | | [https://dlmf.nist.gov/19.4#Ex2 19.4#Ex2] || <math qid="Q6120">\deriv{(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})}{k} = k\compellintKk@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})}{k} = k\compellintKk@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticE(k)-1 - (k)^(2)*EllipticK(k), k) = k*EllipticK(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2], k] == k*EllipticK[(k)^2]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.3189229307917216, 6.419990143492479] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-3.3189229307917216, 6.419990143492479] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4#Ex3 19.4#Ex3] | | | [https://dlmf.nist.gov/19.4#Ex3 19.4#Ex3] || <math qid="Q6121">\deriv{\compellintEk@{k}}{k} = \frac{\compellintEk@{k}-\compellintKk@{k}}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{\compellintEk@{k}}{k} = \frac{\compellintEk@{k}-\compellintKk@{k}}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticE(k), k) = (EllipticE(k)- EllipticK(k))/(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticE[(k)^2], k] == Divide[EllipticE[(k)^2]- EllipticK[(k)^2],k]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4#Ex4 19.4#Ex4] | | | [https://dlmf.nist.gov/19.4#Ex4 19.4#Ex4] || <math qid="Q6122">\deriv{(\compellintEk@{k}-\compellintKk@{k})}{k} = -\frac{k\compellintEk@{k}}{{k^{\prime}}^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{(\compellintEk@{k}-\compellintKk@{k})}{k} = -\frac{k\compellintEk@{k}}{{k^{\prime}}^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticE(k)- EllipticK(k), k) = -(k*EllipticE(k))/(1 - (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticE[(k)^2]- EllipticK[(k)^2], k] == -Divide[k*EllipticE[(k)^2],1 - (k)^(2)]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div> | Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E3 19.4.E3] | | | [https://dlmf.nist.gov/19.4.E3 19.4.E3] || <math qid="Q6123">\deriv[2]{\compellintEk@{k}}{k} = -\frac{1}{k}\deriv{\compellintKk@{k}}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{\compellintEk@{k}}{k} = -\frac{1}{k}\deriv{\compellintKk@{k}}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticE(k), [k$(2)]) = -(1)/(k)*diff(EllipticK(k), k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticE[(k)^2], {k, 2}] == -Divide[1,k]*D[EllipticK[(k)^2], k]</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div> | Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E3 19.4.E3] | | | [https://dlmf.nist.gov/19.4.E3 19.4.E3] || <math qid="Q6123">-\frac{1}{k}\deriv{\compellintKk@{k}}{k} = \frac{{k^{\prime}}^{2}\compellintKk@{k}-\compellintEk@{k}}{k^{2}{k^{\prime}}^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\frac{1}{k}\deriv{\compellintKk@{k}}{k} = \frac{{k^{\prime}}^{2}\compellintKk@{k}-\compellintEk@{k}}{k^{2}{k^{\prime}}^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-(1)/(k)*diff(EllipticK(k), k) = (1 - (k)^(2)*EllipticK(k)- EllipticE(k))/((k)^(2)*1 - (k)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[1,k]*D[EllipticK[(k)^2], k] == Divide[1 - (k)^(2)*EllipticK[(k)^2]- EllipticE[(k)^2],(k)^(2)*1 - (k)^(2)]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E4 19.4.E4] | | | [https://dlmf.nist.gov/19.4.E4 19.4.E4] || <math qid="Q6124">\pderiv{\compellintPik@{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintPik@{\alpha^{2}}{k})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\compellintPik@{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintPik@{\alpha^{2}}{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticPi((alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(k)-1 - (k)^(2)*EllipticPi((alpha)^(2), k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticPi[\[Alpha]^(2), (k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), (k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.38994760629924174, 1.2322724929931343] | Test Values: {Rule[k, 1], Rule[α, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.38994760629924174, 1.2322724929931343] | ||
Test Values: {Rule[k, 2], Rule[α, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[α, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E5 19.4.E5] | | | [https://dlmf.nist.gov/19.4.E5 19.4.E5] || <math qid="Q6125">\pderiv{\incellintFk@{\phi}{k}}{k} = {\frac{\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintFk@{\phi}{k}}{k{k^{\prime}}^{2}}-\frac{k\sin@@{\phi}\cos@@{\phi}}{{k^{\prime}}^{2}\sqrt{1-k^{2}\sin^{2}@@{\phi}}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\incellintFk@{\phi}{k}}{k} = {\frac{\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintFk@{\phi}{k}}{k{k^{\prime}}^{2}}-\frac{k\sin@@{\phi}\cos@@{\phi}}{{k^{\prime}}^{2}\sqrt{1-k^{2}\sin^{2}@@{\phi}}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticF(sin(phi), k), k) = (EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticF(sin(phi), k))/(k*1 - (k)^(2))-(k*sin(phi)*cos(phi))/(1 - (k)^(2)*sqrt(1 - (k)^(2)* (sin(phi))^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticF[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticF[\[Phi], (k)^2],k*1 - (k)^(2)]-Divide[k*Sin[\[Phi]]*Cos[\[Phi]],1 - (k)^(2)*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.296981010-1.781988683*I | Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.296981010-1.781988683*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Line 44: | Line 44: | ||
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E6 19.4.E6] | | | [https://dlmf.nist.gov/19.4.E6 19.4.E6] || <math qid="Q6126">\pderiv{\incellintEk@{\phi}{k}}{k} = \frac{\incellintEk@{\phi}{k}-\incellintFk@{\phi}{k}}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\incellintEk@{\phi}{k}}{k} = \frac{\incellintEk@{\phi}{k}-\incellintFk@{\phi}{k}}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticE(sin(phi), k), k) = (EllipticE(sin(phi), k)- EllipticF(sin(phi), k))/(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticE[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]- EllipticF[\[Phi], (k)^2],k]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 30] | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E7 19.4.E7] | | | [https://dlmf.nist.gov/19.4.E7 19.4.E7] || <math qid="Q6127">\pderiv{\incellintPik@{\phi}{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintPik@{\phi}{\alpha^{2}}{k}}-\frac{k^{2}\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv{\incellintPik@{\phi}{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintPik@{\phi}{\alpha^{2}}{k}}-\frac{k^{2}\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(EllipticPi(sin(phi), (alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticPi(sin(phi), (alpha)^(2), k)-((k)^(2)* sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]-Divide[(k)^(2)* Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]])</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(undefined)+Float(undefined)*I | ||
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.135398794+1.052011331*I | Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -5.135398794+1.052011331*I | ||
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [90 / 90]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Line 52: | Line 52: | ||
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E8 19.4.E8] | | | [https://dlmf.nist.gov/19.4.E8 19.4.E8] || <math qid="Q6128">(k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\incellintFk@{\phi}{k} = \frac{-k\sin@@{\phi}\cos@@{\phi}}{(1-k^{2}\sin^{2}@@{\phi})^{3/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\incellintFk@{\phi}{k} = \frac{-k\sin@@{\phi}\cos@@{\phi}}{(1-k^{2}\sin^{2}@@{\phi})^{3/2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(k*1 - (k)^(2)*(D[k])^(2)+(1 - 3*(k)^(2))*D[k]- k)*EllipticF(sin(phi), k) = (- k*sin(phi)*cos(phi))/((1 - (k)^(2)* (sin(phi))^(2))^(3/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(k*1 - (k)^(2)*(Subscript[D, k])^(2)+(1 - 3*(k)^(2))*Subscript[D, k]- k)*EllipticF[\[Phi], (k)^2] == Divide[- k*Sin[\[Phi]]*Cos[\[Phi]],(1 - (k)^(2)* (Sin[\[Phi]])^(2))^(3/2)]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.4174282354972822, 0.36074991075375373], Times[Complex[0.43180375739814203, 0.27142936483528934], Plus[Complex[-0.8660254037844387, -0.49999999999999994], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]] | ||
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.38000132033999284, 0.977947559972491], Times[Complex[0.3965687056216178, 0.33175091278780894], Plus[Complex[-4.763139720814413, -2.7499999999999996], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] | Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.38000132033999284, 0.977947559972491], Times[Complex[0.3965687056216178, 0.33175091278780894], Plus[Complex[-4.763139720814413, -2.7499999999999996], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] | ||
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.4.E9 19.4.E9] | | | [https://dlmf.nist.gov/19.4.E9 19.4.E9] || <math qid="Q6129">(k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+k)\incellintEk@{\phi}{k} = \frac{k\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+k)\incellintEk@{\phi}{k} = \frac{k\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(k*1 - (k)^(2)*(D[k])^(2)+1 - (k)^(2)*D[k]+ k)*EllipticE(sin(phi), k) = (k*sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>(k*1 - (k)^(2)*(Subscript[D, k])^(2)+1 - (k)^(2)*Subscript[D, k]+ k)*EllipticE[\[Phi], (k)^2] == Divide[k*Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.4327885168580316, -0.2292976446734403], Times[Complex[0.43278851685803155, 0.22929764467344024], Plus[Complex[2.566987298107781, -0.24999999999999997], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]] | ||
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6011783848834926, -0.7526006723022071], Times[Complex[0.44208095936294645, 0.16535187593702125], Plus[Complex[3.2679491924311224, -0.9999999999999999], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] | Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6011783848834926, -0.7526006723022071], Times[Complex[0.44208095936294645, 0.16535187593702125], Plus[Complex[3.2679491924311224, -0.9999999999999999], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]] | ||
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:48, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.4#Ex1 | \deriv{\compellintKk@{k}}{k} = \frac{\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k}}{k{k^{\prime}}^{2}} |
|
diff(EllipticK(k), k) = (EllipticE(k)-1 - (k)^(2)*EllipticK(k))/(k*1 - (k)^(2))
|
D[EllipticK[(k)^2], k] == Divide[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2],k*1 - (k)^(2)]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-2.4717549813624253, 3.1435959698369205]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.4#Ex2 | \deriv{(\compellintEk@{k}-{k^{\prime}}^{2}\compellintKk@{k})}{k} = k\compellintKk@{k} |
|
diff(EllipticE(k)-1 - (k)^(2)*EllipticK(k), k) = k*EllipticK(k)
|
D[EllipticE[(k)^2]-1 - (k)^(2)*EllipticK[(k)^2], k] == k*EllipticK[(k)^2]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-3.3189229307917216, 6.419990143492479]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.4#Ex3 | \deriv{\compellintEk@{k}}{k} = \frac{\compellintEk@{k}-\compellintKk@{k}}{k} |
|
diff(EllipticE(k), k) = (EllipticE(k)- EllipticK(k))/(k)
|
D[EllipticE[(k)^2], k] == Divide[EllipticE[(k)^2]- EllipticK[(k)^2],k]
|
Successful | Successful | - | Successful [Tested: 3] |
19.4#Ex4 | \deriv{(\compellintEk@{k}-\compellintKk@{k})}{k} = -\frac{k\compellintEk@{k}}{{k^{\prime}}^{2}} |
|
diff(EllipticE(k)- EllipticK(k), k) = -(k*EllipticE(k))/(1 - (k)^(2))
|
D[EllipticE[(k)^2]- EllipticK[(k)^2], k] == -Divide[k*EllipticE[(k)^2],1 - (k)^(2)]
|
Successful | Successful | - | Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.4.E3 | \deriv[2]{\compellintEk@{k}}{k} = -\frac{1}{k}\deriv{\compellintKk@{k}}{k} |
|
diff(EllipticE(k), [k$(2)]) = -(1)/(k)*diff(EllipticK(k), k)
|
D[EllipticE[(k)^2], {k, 2}] == -Divide[1,k]*D[EllipticK[(k)^2], k]
|
Successful | Successful | - | Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
|
19.4.E3 | -\frac{1}{k}\deriv{\compellintKk@{k}}{k} = \frac{{k^{\prime}}^{2}\compellintKk@{k}-\compellintEk@{k}}{k^{2}{k^{\prime}}^{2}} |
|
-(1)/(k)*diff(EllipticK(k), k) = (1 - (k)^(2)*EllipticK(k)- EllipticE(k))/((k)^(2)*1 - (k)^(2))
|
-Divide[1,k]*D[EllipticK[(k)^2], k] == Divide[1 - (k)^(2)*EllipticK[(k)^2]- EllipticE[(k)^2],(k)^(2)*1 - (k)^(2)]
|
Error | Failure | - | Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}
Result: DirectedInfinity[]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
19.4.E4 | \pderiv{\compellintPik@{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}(\compellintEk@{k}-{k^{\prime}}^{2}\compellintPik@{\alpha^{2}}{k}) |
|
diff(EllipticPi((alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(k)-1 - (k)^(2)*EllipticPi((alpha)^(2), k))
|
D[EllipticPi[\[Alpha]^(2), (k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[(k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), (k)^2])
|
Failure | Failure | Error | Failed [9 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5]}
Result: Complex[0.38994760629924174, 1.2322724929931343]
Test Values: {Rule[k, 2], Rule[α, 1.5]}
... skip entries to safe data |
19.4.E5 | \pderiv{\incellintFk@{\phi}{k}}{k} = {\frac{\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintFk@{\phi}{k}}{k{k^{\prime}}^{2}}-\frac{k\sin@@{\phi}\cos@@{\phi}}{{k^{\prime}}^{2}\sqrt{1-k^{2}\sin^{2}@@{\phi}}}} |
|
diff(EllipticF(sin(phi), k), k) = (EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticF(sin(phi), k))/(k*1 - (k)^(2))-(k*sin(phi)*cos(phi))/(1 - (k)^(2)*sqrt(1 - (k)^(2)* (sin(phi))^(2)))
|
D[EllipticF[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticF[\[Phi], (k)^2],k*1 - (k)^(2)]-Divide[k*Sin[\[Phi]]*Cos[\[Phi]],1 - (k)^(2)*Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]
|
Failure | Failure | Failed [30 / 30] Result: Float(infinity)+Float(infinity)*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -1.296981010-1.781988683*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [30 / 30]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-1.2927667883728842, -0.7915995039632082]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.4.E6 | \pderiv{\incellintEk@{\phi}{k}}{k} = \frac{\incellintEk@{\phi}{k}-\incellintFk@{\phi}{k}}{k} |
|
diff(EllipticE(sin(phi), k), k) = (EllipticE(sin(phi), k)- EllipticF(sin(phi), k))/(k)
|
D[EllipticE[\[Phi], (k)^2], k] == Divide[EllipticE[\[Phi], (k)^2]- EllipticF[\[Phi], (k)^2],k]
|
Successful | Successful | - | Successful [Tested: 30] |
19.4.E7 | \pderiv{\incellintPik@{\phi}{\alpha^{2}}{k}}{k} = \frac{k}{{k^{\prime}}^{2}(k^{2}-\alpha^{2})}\left({\incellintEk@{\phi}{k}-{k^{\prime}}^{2}\incellintPik@{\phi}{\alpha^{2}}{k}}-\frac{k^{2}\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}}\right) |
|
diff(EllipticPi(sin(phi), (alpha)^(2), k), k) = (k)/(1 - (k)^(2)*((k)^(2)- (alpha)^(2)))*(EllipticE(sin(phi), k)-1 - (k)^(2)*EllipticPi(sin(phi), (alpha)^(2), k)-((k)^(2)* sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2))))
|
D[EllipticPi[\[Alpha]^(2), \[Phi],(k)^2], k] == Divide[k,1 - (k)^(2)*((k)^(2)- \[Alpha]^(2))]*(EllipticE[\[Phi], (k)^2]-1 - (k)^(2)*EllipticPi[\[Alpha]^(2), \[Phi],(k)^2]-Divide[(k)^(2)* Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]])
|
Failure | Aborted | Failed [90 / 90] Result: Float(undefined)+Float(undefined)*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -5.135398794+1.052011331*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, k = 2}
... skip entries to safe data |
Failed [90 / 90]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-1.1264235284707635, -0.9763567309038728]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.4.E8 | (k{k^{\prime}}^{2}D_{k}^{2}+(1-3k^{2})D_{k}-k)\incellintFk@{\phi}{k} = \frac{-k\sin@@{\phi}\cos@@{\phi}}{(1-k^{2}\sin^{2}@@{\phi})^{3/2}} |
|
(k*1 - (k)^(2)*(D[k])^(2)+(1 - 3*(k)^(2))*D[k]- k)*EllipticF(sin(phi), k) = (- k*sin(phi)*cos(phi))/((1 - (k)^(2)* (sin(phi))^(2))^(3/2))
|
(k*1 - (k)^(2)*(Subscript[D, k])^(2)+(1 - 3*(k)^(2))*Subscript[D, k]- k)*EllipticF[\[Phi], (k)^2] == Divide[- k*Sin[\[Phi]]*Cos[\[Phi]],(1 - (k)^(2)* (Sin[\[Phi]])^(2))^(3/2)]
|
Error | Failure | - | Failed [300 / 300]
Result: Plus[Complex[0.4174282354972822, 0.36074991075375373], Times[Complex[0.43180375739814203, 0.27142936483528934], Plus[Complex[-0.8660254037844387, -0.49999999999999994], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[-0.38000132033999284, 0.977947559972491], Times[Complex[0.3965687056216178, 0.33175091278780894], Plus[Complex[-4.763139720814413, -2.7499999999999996], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |
19.4.E9 | (k{k^{\prime}}^{2}D_{k}^{2}+{k^{\prime}}^{2}D_{k}+k)\incellintEk@{\phi}{k} = \frac{k\sin@@{\phi}\cos@@{\phi}}{\sqrt{1-k^{2}\sin^{2}@@{\phi}}} |
|
(k*1 - (k)^(2)*(D[k])^(2)+1 - (k)^(2)*D[k]+ k)*EllipticE(sin(phi), k) = (k*sin(phi)*cos(phi))/(sqrt(1 - (k)^(2)* (sin(phi))^(2)))
|
(k*1 - (k)^(2)*(Subscript[D, k])^(2)+1 - (k)^(2)*Subscript[D, k]+ k)*EllipticE[\[Phi], (k)^2] == Divide[k*Sin[\[Phi]]*Cos[\[Phi]],Sqrt[1 - (k)^(2)* (Sin[\[Phi]])^(2)]]
|
Error | Failure | - | Failed [300 / 300]
Result: Plus[Complex[-0.4327885168580316, -0.2292976446734403], Times[Complex[0.43278851685803155, 0.22929764467344024], Plus[Complex[2.566987298107781, -0.24999999999999997], Times[Complex[-0.12500000000000003, -0.21650635094610965], D]]]]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[-0.6011783848834926, -0.7526006723022071], Times[Complex[0.44208095936294645, 0.16535187593702125], Plus[Complex[3.2679491924311224, -0.9999999999999999], Times[Complex[-0.5000000000000001, -0.8660254037844386], D]]]]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[D, k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
... skip entries to safe data |