22.14: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/22.14.E1 22.14.E1] || [[Item:Q7076|<math>\int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiSN(x, k), x) = (k)^(- 1)* ln(JacobiDN(x, k)- k*JacobiCN(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiDN[x, (k)^2]- k*JacobiCN[x, (k)^2]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/22.14.E1 22.14.E1] || <math qid="Q7076">\int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiSN(x, k), x) = (k)^(- 1)* ln(JacobiDN(x, k)- k*JacobiCN(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiDN[x, (k)^2]- k*JacobiCN[x, (k)^2]]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 1], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E2 22.14.E2] || [[Item:Q7077|<math>\int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* ArcCos[JacobiDN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.2690416691147375
| [https://dlmf.nist.gov/22.14.E2 22.14.E2] || <math qid="Q7077">\int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* ArcCos[JacobiDN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.2690416691147375
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.5226182800392123
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.5226182800392123
Test Values: {Rule[k, 2], Rule[x, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E3 22.14.E3] || [[Item:Q7078|<math>\int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDN[x, (k)^2], x, GenerateConditions->None] == ArcSin[JacobiSN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185307179586
| [https://dlmf.nist.gov/22.14.E3 22.14.E3] || <math qid="Q7078">\int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDN[x, (k)^2], x, GenerateConditions->None] == ArcSin[JacobiSN[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 6.283185307179586
Test Values: {Rule[k, 2], Rule[x, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E3 22.14.E3] || [[Item:Q7078|<math>\Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[JacobiSN[x, (k)^2]] == JacobiAmplitude[x, Power[k, 2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586
| [https://dlmf.nist.gov/22.14.E3 22.14.E3] || <math qid="Q7078">\Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ArcSin[JacobiSN[x, (k)^2]] == JacobiAmplitude[x, Power[k, 2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E4 22.14.E4] || [[Item:Q7079|<math>\int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiCD(x, k), x) = (k)^(- 1)* ln(JacobiND(x, k)+ k*JacobiSD(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCD[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiND[x, (k)^2]+ k*JacobiSD[x, (k)^2]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E4 22.14.E4] || <math qid="Q7079">\int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiCD(x, k), x) = (k)^(- 1)* ln(JacobiND(x, k)+ k*JacobiSD(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCD[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiND[x, (k)^2]+ k*JacobiSD[x, (k)^2]]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E5 22.14.E5] || [[Item:Q7080|<math>\int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSD[x, (k)^2], x, GenerateConditions->None] == (k*Sqrt[1 - (k)^(2)])^(- 1)* ArcSin[- k*JacobiCD[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/22.14.E5 22.14.E5] || <math qid="Q7080">\int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSD[x, (k)^2], x, GenerateConditions->None] == (k*Sqrt[1 - (k)^(2)])^(- 1)* ArcSin[- k*JacobiCD[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7955664885698261, 0.9068996821171089]
Test Values: {Rule[k, 1], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.7955664885698261, 0.9068996821171089]
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E6 22.14.E6] || [[Item:Q7081|<math>\int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiND[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* ArcCos[JacobiCD[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/22.14.E6 22.14.E6] || <math qid="Q7081">\int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiND[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* ArcCos[JacobiCD[x, (k)^2]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -1.7320508075688772], Times[-0.3333333333333333, ArcCos[JacobiCD[x, 4.0]], Power[Plus[1.0, Times[-1.0, Power[JacobiCD[x, 4.0], 2]]], Rational[1, 2]], JacobiDN[x, 4.0], Power[JacobiSN[x, 4.0], -1]]]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, -1.7320508075688772], Times[-0.3333333333333333, ArcCos[JacobiCD[x, 4.0]], Power[Plus[1.0, Times[-1.0, Power[JacobiCD[x, 4.0], 2]]], Rational[1, 2]], JacobiDN[x, 4.0], Power[JacobiSN[x, 4.0], -1]]]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E7 22.14.E7] || [[Item:Q7082|<math>\int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiDC(x, k), x) = ln(JacobiNC(x, k)+ JacobiSC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDC[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNC[x, (k)^2]+ JacobiSC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E7 22.14.E7] || <math qid="Q7082">\int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiDC(x, k), x) = ln(JacobiNC(x, k)+ JacobiSC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDC[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNC[x, (k)^2]+ JacobiSC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E8 22.14.E8] || [[Item:Q7083|<math>\int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiNC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiSC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiNC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiSC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E8 22.14.E8] || <math qid="Q7083">\int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiNC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiSC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiNC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiSC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E9 22.14.E9] || [[Item:Q7084|<math>\int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiSC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiNC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiNC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E9 22.14.E9] || <math qid="Q7084">\int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiSC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiNC(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiSC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiNC[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E10 22.14.E10] || [[Item:Q7085|<math>\int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiNS(x, k), x) = ln(JacobiDS(x, k)- JacobiCS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiNS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiDS[x, (k)^2]- JacobiCS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E10 22.14.E10] || <math qid="Q7085">\int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiNS(x, k), x) = ln(JacobiDS(x, k)- JacobiCS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiNS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiDS[x, (k)^2]- JacobiCS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E11 22.14.E11] || [[Item:Q7086|<math>\int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiDS(x, k), x) = ln(JacobiNS(x, k)- JacobiCS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiCS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E11 22.14.E11] || <math qid="Q7086">\int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiDS(x, k), x) = ln(JacobiNS(x, k)- JacobiCS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiDS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiCS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E12 22.14.E12] || [[Item:Q7087|<math>\int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiCS(x, k), x) = ln(JacobiNS(x, k)- JacobiDS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiDS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E12 22.14.E12] || <math qid="Q7087">\int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(JacobiCS(x, k), x) = ln(JacobiNS(x, k)- JacobiDS(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[JacobiCS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiDS[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E13 22.14.E13] || [[Item:Q7088|<math>\int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(JacobiSN(x, k)), x) = ln((JacobiSN(x, k))/(JacobiCN(x, k)+ JacobiDN(x, k)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Log[Divide[JacobiSN[x, (k)^2],JacobiCN[x, (k)^2]+ JacobiDN[x, (k)^2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E13 22.14.E13] || <math qid="Q7088">\int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((1)/(JacobiSN(x, k)), x) = ln((JacobiSN(x, k))/(JacobiCN(x, k)+ JacobiDN(x, k)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[1,JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Log[Divide[JacobiSN[x, (k)^2],JacobiCN[x, (k)^2]+ JacobiDN[x, (k)^2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E14 22.14.E14] || [[Item:Q7089|<math>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((JacobiCN(x, k))/(JacobiSN(x, k)), x) = (1)/(2)*ln((1 - JacobiDN(x, k))/(1 + JacobiDN(x, k)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[JacobiCN[x, (k)^2],JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Divide[1,2]*Log[Divide[1 - JacobiDN[x, (k)^2],1 + JacobiDN[x, (k)^2]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.6931471805599452
| [https://dlmf.nist.gov/22.14.E14 22.14.E14] || <math qid="Q7089">\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((JacobiCN(x, k))/(JacobiSN(x, k)), x) = (1)/(2)*ln((1 - JacobiDN(x, k))/(1 + JacobiDN(x, k)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[JacobiCN[x, (k)^2],JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Divide[1,2]*Log[Divide[1 - JacobiDN[x, (k)^2],1 + JacobiDN[x, (k)^2]]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || <div class="toccolours mw-collapsible mw-collapsed">Failed [6 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.6931471805599452
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0986122886681102, 3.141592653589793]
Test Values: {Rule[k, 2], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.0986122886681102, 3.141592653589793]
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 3], Rule[x, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/22.14.E15 22.14.E15] || [[Item:Q7090|<math>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((JacobiCN(x, k))/((JacobiSN(x, k))^(2)), x) = -(JacobiDN(x, k))/(JacobiSN(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[JacobiCN[x, (k)^2],(JacobiSN[x, (k)^2])^(2)], x, GenerateConditions->None] == -Divide[JacobiDN[x, (k)^2],JacobiSN[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/22.14.E15 22.14.E15] || <math qid="Q7090">\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int((JacobiCN(x, k))/((JacobiSN(x, k))^(2)), x) = -(JacobiDN(x, k))/(JacobiSN(x, k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[JacobiCN[x, (k)^2],(JacobiSN[x, (k)^2])^(2)], x, GenerateConditions->None] == -Divide[JacobiDN[x, (k)^2],JacobiSN[x, (k)^2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/22.14.E16 22.14.E16] || [[Item:Q7091|<math>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiSN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)-(1)/(2)*EllipticK(k)*ln(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiSN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]-Divide[1,2]*EllipticK[(k)^2]*Log[k]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/22.14.E16 22.14.E16] || <math qid="Q7091">\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiSN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)-(1)/(2)*EllipticK(k)*ln(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiSN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]-Divide[1,2]*EllipticK[(k)^2]*Log[k]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/22.14.E17 22.14.E17] || [[Item:Q7092|<math>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiCN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)+(1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2))/k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiCN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]+Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]/k]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/22.14.E17 22.14.E17] || <math qid="Q7092">\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiCN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)+(1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2))/k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiCN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]+Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]/k]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/22.14.E18 22.14.E18] || [[Item:Q7093|<math>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiDN(t, k)), t = 0..EllipticK(k)) = (1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiDN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
| [https://dlmf.nist.gov/22.14.E18 22.14.E18] || <math qid="Q7093">\int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(ln(JacobiDN(t, k)), t = 0..EllipticK(k)) = (1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Log[JacobiDN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]]</syntaxhighlight> || Failure || Failure || Error || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 12:59, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
22.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}}
\int\Jacobiellsnk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobielldnk@{x}{k}-k\Jacobiellcnk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiSN(x, k), x) = (k)^(- 1)* ln(JacobiDN(x, k)- k*JacobiCN(x, k))
Integrate[JacobiSN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiDN[x, (k)^2]- k*JacobiCN[x, (k)^2]]
Successful Failure -
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 0.5]}

... skip entries to safe data
22.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}}
\int\Jacobiellcnk@{x}{k}\diff{x} = k^{-1}\Acos@{\Jacobielldnk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[JacobiCN[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* ArcCos[JacobiDN[x, (k)^2]]
Missing Macro Error Failure -
Failed [3 / 9]
Result: -1.2690416691147375
Test Values: {Rule[k, 3], Rule[x, 1.5]}

Result: -2.5226182800392123
Test Values: {Rule[k, 2], Rule[x, 2]}

... skip entries to safe data
22.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}}
\int\Jacobielldnk@{x}{k}\diff{x} = \Asin@{\Jacobiellsnk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[JacobiDN[x, (k)^2], x, GenerateConditions->None] == ArcSin[JacobiSN[x, (k)^2]]
Missing Macro Error Failure -
Failed [3 / 9]
Result: 6.283185307179586
Test Values: {Rule[k, 3], Rule[x, 1.5]}

Result: 6.283185307179586
Test Values: {Rule[k, 2], Rule[x, 2]}

... skip entries to safe data
22.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}}
\Asin@{\Jacobiellsnk@{x}{k}} = \Jacobiamk@{x}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ArcSin[JacobiSN[x, (k)^2]] == JacobiAmplitude[x, Power[k, 2]]
Missing Macro Error Failure -
Failed [1 / 3]
Result: -6.283185307179586
Test Values: {Rule[k, 3], Rule[x, Rational[3, 2]]}

22.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}}
\int\Jacobiellcdk@{x}{k}\diff{x} = k^{-1}\ln@{\Jacobiellndk@{x}{k}+k\Jacobiellsdk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiCD(x, k), x) = (k)^(- 1)* ln(JacobiND(x, k)+ k*JacobiSD(x, k))
Integrate[JacobiCD[x, (k)^2], x, GenerateConditions->None] == (k)^(- 1)* Log[JacobiND[x, (k)^2]+ k*JacobiSD[x, (k)^2]]
Successful Failure - Successful [Tested: 9]
22.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}}
\int\Jacobiellsdk@{x}{k}\diff{x} = (kk^{\prime})^{-1}\Asin@{-k\Jacobiellcdk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[JacobiSD[x, (k)^2], x, GenerateConditions->None] == (k*Sqrt[1 - (k)^(2)])^(- 1)* ArcSin[- k*JacobiCD[x, (k)^2]]
Missing Macro Error Aborted -
Failed [6 / 9]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[x, 1.5]}

Result: Complex[0.7955664885698261, 0.9068996821171089]
Test Values: {Rule[k, 2], Rule[x, 1.5]}

... skip entries to safe data
22.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}}
\int\Jacobiellndk@{x}{k}\diff{x} = {k^{\prime}}^{-1}\Acos@{\Jacobiellcdk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Integrate[JacobiND[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* ArcCos[JacobiCD[x, (k)^2]]
Missing Macro Error Failure -
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Plus[Complex[0.0, -1.7320508075688772], Times[-0.3333333333333333, ArcCos[JacobiCD[x, 4.0]], Power[Plus[1.0, Times[-1.0, Power[JacobiCD[x, 4.0], 2]]], Rational[1, 2]], JacobiDN[x, 4.0], Power[JacobiSN[x, 4.0], -1]]]
Test Values: {Rule[k, 2]}

... skip entries to safe data
22.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}}
\int\Jacobielldck@{x}{k}\diff{x} = \ln@{\Jacobiellnck@{x}{k}+\Jacobiellsck@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiDC(x, k), x) = ln(JacobiNC(x, k)+ JacobiSC(x, k))
Integrate[JacobiDC[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNC[x, (k)^2]+ JacobiSC[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}}
\int\Jacobiellnck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellsck@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiNC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiSC(x, k))
Integrate[JacobiNC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiSC[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}}
\int\Jacobiellsck@{x}{k}\diff{x} = {k^{\prime}}^{-1}\ln@{\Jacobielldck@{x}{k}+k^{\prime}\Jacobiellnck@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiSC(x, k), x) = (sqrt(1 - (k)^(2)))^(- 1)* ln(JacobiDC(x, k)+sqrt(1 - (k)^(2))*JacobiNC(x, k))
Integrate[JacobiSC[x, (k)^2], x, GenerateConditions->None] == (Sqrt[1 - (k)^(2)])^(- 1)* Log[JacobiDC[x, (k)^2]+Sqrt[1 - (k)^(2)]*JacobiNC[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}}
\int\Jacobiellnsk@{x}{k}\diff{x} = \ln@{\Jacobielldsk@{x}{k}-\Jacobiellcsk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiNS(x, k), x) = ln(JacobiDS(x, k)- JacobiCS(x, k))
Integrate[JacobiNS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiDS[x, (k)^2]- JacobiCS[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}}
\int\Jacobielldsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobiellcsk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiDS(x, k), x) = ln(JacobiNS(x, k)- JacobiCS(x, k))
Integrate[JacobiDS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiCS[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}}
\int\Jacobiellcsk@{x}{k}\diff{x} = \ln@{\Jacobiellnsk@{x}{k}-\Jacobielldsk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(JacobiCS(x, k), x) = ln(JacobiNS(x, k)- JacobiDS(x, k))
Integrate[JacobiCS[x, (k)^2], x, GenerateConditions->None] == Log[JacobiNS[x, (k)^2]- JacobiDS[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}}
\int\frac{\diff{x}}{\Jacobiellsnk@{x}{k}} = \ln@{\frac{\Jacobiellsnk@{x}{k}}{\Jacobiellcnk@{x}{k}+\Jacobielldnk@{x}{k}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((1)/(JacobiSN(x, k)), x) = ln((JacobiSN(x, k))/(JacobiCN(x, k)+ JacobiDN(x, k)))
Integrate[Divide[1,JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Log[Divide[JacobiSN[x, (k)^2],JacobiCN[x, (k)^2]+ JacobiDN[x, (k)^2]]]
Successful Successful - Successful [Tested: 9]
22.14.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}}
\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk@{x}{k}} = \frac{1}{2}\ln@{\frac{1-\Jacobielldnk@{x}{k}}{1+\Jacobielldnk@{x}{k}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((JacobiCN(x, k))/(JacobiSN(x, k)), x) = (1)/(2)*ln((1 - JacobiDN(x, k))/(1 + JacobiDN(x, k)))
Integrate[Divide[JacobiCN[x, (k)^2],JacobiSN[x, (k)^2]], x, GenerateConditions->None] == Divide[1,2]*Log[Divide[1 - JacobiDN[x, (k)^2],1 + JacobiDN[x, (k)^2]]]
Failure Failure Successful [Tested: 9]
Failed [6 / 9]
Result: 0.6931471805599452
Test Values: {Rule[k, 2], Rule[x, 1.5]}

Result: Complex[1.0986122886681102, 3.141592653589793]
Test Values: {Rule[k, 3], Rule[x, 1.5]}

... skip entries to safe data
22.14.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}}
\int\frac{\Jacobiellcnk@{x}{k}\diff{x}}{\Jacobiellsnk^{2}@{x}{k}} = -\frac{\Jacobielldnk@{x}{k}}{\Jacobiellsnk@{x}{k}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int((JacobiCN(x, k))/((JacobiSN(x, k))^(2)), x) = -(JacobiDN(x, k))/(JacobiSN(x, k))
Integrate[Divide[JacobiCN[x, (k)^2],(JacobiSN[x, (k)^2])^(2)], x, GenerateConditions->None] == -Divide[JacobiDN[x, (k)^2],JacobiSN[x, (k)^2]]
Successful Successful - Successful [Tested: 9]
22.14.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}}
\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellsnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}-\tfrac{1}{2}\compellintKk@{k}\ln@@{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(ln(JacobiSN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)-(1)/(2)*EllipticK(k)*ln(k)
Integrate[Log[JacobiSN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]-Divide[1,2]*EllipticK[(k)^2]*Log[k]
Failure Failure Error Skipped - Because timed out
22.14.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}}
\int_{0}^{\compellintKk@{k}}\ln@{\Jacobiellcnk@{t}{k}}\diff{t} = -\tfrac{\cpi}{4}\ccompellintKk@{k}+\tfrac{1}{2}\compellintKk@{k}\ln@{k^{\prime}/k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(ln(JacobiCN(t, k)), t = 0..EllipticK(k)) = -(Pi)/(4)*EllipticCK(k)+(1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2))/k)
Integrate[Log[JacobiCN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == -Divide[Pi,4]*EllipticK[1-(k)^2]+Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]/k]
Failure Failure Error Skipped - Because timed out
22.14.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}}
\int_{0}^{\compellintKk@{k}}\ln@{\Jacobielldnk@{t}{k}}\diff{t} = \tfrac{1}{2}\compellintKk@{k}\ln@@{k^{\prime}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
int(ln(JacobiDN(t, k)), t = 0..EllipticK(k)) = (1)/(2)*EllipticK(k)*ln(sqrt(1 - (k)^(2)))
Integrate[Log[JacobiDN[t, (k)^2]], {t, 0, EllipticK[(k)^2]}, GenerateConditions->None] == Divide[1,2]*EllipticK[(k)^2]*Log[Sqrt[1 - (k)^(2)]]
Failure Failure Error Skipped - Because timed out