27.7: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
|  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |  Admin moved page Main Page to Verifying DLMF with Maple and Mathematica | ||
| Line 14: | Line 14: | ||
| ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/27.7.E4 27.7.E4] | | | [https://dlmf.nist.gov/27.7.E4 27.7.E4] || <math qid="Q8044">\sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(phi(n)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = (x)/((1 - x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[EulerPhi[n]*Divide[(x)^(n),1 - (x)^(n)], {n, 1, Infinity}, GenerateConditions->None] == Divide[x,(1 - x)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 1] || Successful [Tested: 1] | ||
| |-   | |-   | ||
| | [https://dlmf.nist.gov/27.7.E5 27.7.E5] | | | [https://dlmf.nist.gov/27.7.E5 27.7.E5] || <math qid="Q8045">\sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n}</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum((n)^(alpha)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = sum(add(divisors(alpha))*(x)^(n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.671514971 | ||
| Test Values: {alpha = 3/2, x = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.507450946 | Test Values: {alpha = 3/2, x = 1/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.507450946 | ||
| Test Values: {alpha = 1/2, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | Test Values: {alpha = 1/2, x = 1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || - | ||
| |} | |} | ||
| </div> | </div> | ||
Latest revision as of 12:06, 28 June 2021
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 27.7.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}}} \sum_{n=1}^{\infty}\Eulertotientphi[]@{n}\frac{x^{n}}{1-x^{n}} = \frac{x}{(1-x)^{2}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | sum(phi(n)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = (x)/((1 - x)^(2))
 | Sum[EulerPhi[n]*Divide[(x)^(n),1 - (x)^(n)], {n, 1, Infinity}, GenerateConditions->None] == Divide[x,(1 - x)^(2)]
 | Failure | Successful | Successful [Tested: 1] | Successful [Tested: 1] | 
| 27.7.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n}} \sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1} | sum((n)^(alpha)*((x)^(n))/(1 - (x)^(n)), n = 1..infinity) = sum(add(divisors(alpha))*(x)^(n), n = 1..infinity)
 | Error
 | Failure | Missing Macro Error | Failed [3 / 3] Result: 2.671514971
Test Values: {alpha = 3/2, x = 1/2}
Result: 1.507450946
Test Values: {alpha = 1/2, x = 1/2}
... skip entries to safe data | - |