28.10: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/28.10.E1 28.10.E1] || [[Item:Q8280|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(2*h*cos(z)*cos(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), (1)/(2)*Pi))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[2*h*Cos[z]*Cos[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), Divide[1,2]*Pi]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E1 28.10.E1] || <math qid="Q8280">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(2*h*cos(z)*cos(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), (1)/(2)*Pi))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[2*h*Cos[z]*Cos[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), Divide[1,2]*Pi]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E2 28.10.E2] || [[Item:Q8281|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), 0))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), 0]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E2 28.10.E2] || <math qid="Q8281">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), 0))*MathieuCE(2*n, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), 0]]*MathieuC[2*n, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E3 28.10.E3] || [[Item:Q8282|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(2*h*cos(z)*cos(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = -((hA[1])^(2*n + 1)((h)^(2)))/(subs( temp=(1)/(2)*Pi, diff( MathieuCE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[2*h*Cos[z]*Cos[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hA, 1])^(2*n + 1)[(h)^(2)],D[MathieuC[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E3 28.10.E3] || <math qid="Q8282">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(2*h*cos(z)*cos(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = -((hA[1])^(2*n + 1)((h)^(2)))/(subs( temp=(1)/(2)*Pi, diff( MathieuCE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[2*h*Cos[z]*Cos[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hA, 1])^(2*n + 1)[(h)^(2)],D[MathieuC[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E4 28.10.E4] || [[Item:Q8283|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[1])^(2*n + 1)((h)^(2)))/(2*MathieuCE(2*n + 1, (h)^(2), 0))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 1])^(2*n + 1)[(h)^(2)],2*MathieuC[2*n + 1, (h)^(2), 0]]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E4 28.10.E4] || <math qid="Q8283">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[1])^(2*n + 1)((h)^(2)))/(2*MathieuCE(2*n + 1, (h)^(2), 0))*MathieuCE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 1])^(2*n + 1)[(h)^(2)],2*MathieuC[2*n + 1, (h)^(2), 0]]*MathieuC[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E5 28.10.E5] || [[Item:Q8284|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[1])^(2*n + 1)((h)^(2)))/(subs( temp=0, diff( MathieuSE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 1])^(2*n + 1)[(h)^(2)],D[MathieuS[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> 0]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E5 28.10.E5] || <math qid="Q8284">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[1])^(2*n + 1)((h)^(2)))/(subs( temp=0, diff( MathieuSE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 1])^(2*n + 1)[(h)^(2)],D[MathieuS[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> 0]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E6 28.10.E6] || [[Item:Q8285|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*cos(2*h*cos(z)*cos(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((B[1])^(2*n + 1)((h)^(2)))/(2*MathieuSE(2*n + 1, (h)^(2), (1)/(2)*Pi))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Cos[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[B, 1])^(2*n + 1)[(h)^(2)],2*MathieuS[2*n + 1, (h)^(2), Divide[1,2]*Pi]]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E6 28.10.E6] || <math qid="Q8285">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*cos(2*h*cos(z)*cos(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((B[1])^(2*n + 1)((h)^(2)))/(2*MathieuSE(2*n + 1, (h)^(2), (1)/(2)*Pi))*MathieuSE(2*n + 1, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Cos[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[B, 1])^(2*n + 1)[(h)^(2)],2*MathieuS[2*n + 1, (h)^(2), Divide[1,2]*Pi]]*MathieuS[2*n + 1, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E7 28.10.E7] || [[Item:Q8286|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*sin(2*h*cos(z)*cos(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = -((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=(1)/(2)*Pi, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Sin[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E7 28.10.E7] || <math qid="Q8286">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(sin(z)*sin(t)*sin(2*h*cos(z)*cos(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = -((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=(1)/(2)*Pi, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Sin[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.10.E8 28.10.E8] || [[Item:Q8287|<math>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=0, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> 0)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.10.E8 28.10.E8] || <math qid="Q8287">\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(2)/(Pi)*int(cos(z)*cos(t)*sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=0, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> 0)]*MathieuS[2*n + 2, (h)^(2), z]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 12:07, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(cos(2*h*cos(z)*cos(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), (1)/(2)*Pi))*MathieuCE(2*n, (h)^(2), z)
Divide[2,Pi]*Integrate[Cos[2*h*Cos[z]*Cos[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), Divide[1,2]*Pi]]*MathieuC[2*n, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n}@{t}{h^{2}}\diff{t} = \frac{A_{0}^{2n}(h^{2})}{\Mathieuce{2n}@{0}{h^{2}}}\Mathieuce{2n}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[0])^(2*n)((h)^(2)))/(MathieuCE(2*n, (h)^(2), 0))*MathieuCE(2*n, (h)^(2), z)
Divide[2,Pi]*Integrate[Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 0])^(2*n)[(h)^(2)],MathieuC[2*n, (h)^(2), 0]]*MathieuC[2*n, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = -\frac{hA_{1}^{2n+1}(h^{2})}{\Mathieuce{2n+1}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(sin(2*h*cos(z)*cos(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = -((hA[1])^(2*n + 1)((h)^(2)))/(subs( temp=(1)/(2)*Pi, diff( MathieuCE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuCE(2*n + 1, (h)^(2), z)
Divide[2,Pi]*Integrate[Sin[2*h*Cos[z]*Cos[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hA, 1])^(2*n + 1)[(h)^(2)],D[MathieuC[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi]*MathieuC[2*n + 1, (h)^(2), z]
Failure Failure Skipped - Because timed out Skipped - Because timed out
28.10.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\cosh@{2h\sin@@{z}\sin@@{t}}\Mathieuce{2n+1}@{t}{h^{2}}\diff{t} = \frac{A_{1}^{2n+1}(h^{2})}{2\Mathieuce{2n+1}@{0}{h^{2}}}\Mathieuce{2n+1}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(cos(z)*cos(t)*cosh(2*h*sin(z)*sin(t))*MathieuCE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((A[1])^(2*n + 1)((h)^(2)))/(2*MathieuCE(2*n + 1, (h)^(2), 0))*MathieuCE(2*n + 1, (h)^(2), z)
Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Cosh[2*h*Sin[z]*Sin[t]]*MathieuC[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[A, 1])^(2*n + 1)[(h)^(2)],2*MathieuC[2*n + 1, (h)^(2), 0]]*MathieuC[2*n + 1, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.10.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{hB_{1}^{2n+1}(h^{2})}{\Mathieuse{2n+1}'@{0}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[1])^(2*n + 1)((h)^(2)))/(subs( temp=0, diff( MathieuSE(2*n + 1, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 1, (h)^(2), z)
Divide[2,Pi]*Integrate[Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 1])^(2*n + 1)[(h)^(2)],D[MathieuS[2*n + 1, (h)^(2), temp], {temp, 1}]/.temp-> 0]*MathieuS[2*n + 1, (h)^(2), z]
Failure Failure Skipped - Because timed out Skipped - Because timed out
28.10.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\cos@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+1}@{t}{h^{2}}\diff{t} = \frac{B_{1}^{2n+1}(h^{2})}{2\Mathieuse{2n+1}@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+1}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(sin(z)*sin(t)*cos(2*h*cos(z)*cos(t))*MathieuSE(2*n + 1, (h)^(2), t), t = 0..(Pi)/(2)) = ((B[1])^(2*n + 1)((h)^(2)))/(2*MathieuSE(2*n + 1, (h)^(2), (1)/(2)*Pi))*MathieuSE(2*n + 1, (h)^(2), z)
Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Cos[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 1, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[B, 1])^(2*n + 1)[(h)^(2)],2*MathieuS[2*n + 1, (h)^(2), Divide[1,2]*Pi]]*MathieuS[2*n + 1, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin@@{z}\sin@@{t}\sin@{2h\cos@@{z}\cos@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = -\frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{\frac{1}{2}\pi}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(sin(z)*sin(t)*sin(2*h*cos(z)*cos(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = -((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=(1)/(2)*Pi, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)
Divide[2,Pi]*Integrate[Sin[z]*Sin[t]*Sin[2*h*Cos[z]*Cos[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == -Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> Divide[1,2]*Pi)]*MathieuS[2*n + 2, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.10.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}}
\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\cos@@{z}\cos@@{t}\sinh@{2h\sin@@{z}\sin@@{t}}\Mathieuse{2n+2}@{t}{h^{2}}\diff{t} = \frac{hB_{2}^{2n+2}(h^{2})}{2\Mathieuse{2n+2}'@{0}{h^{2}}}\Mathieuse{2n+2}@{z}{h^{2}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(2)/(Pi)*int(cos(z)*cos(t)*sinh(2*h*sin(z)*sin(t))*MathieuSE(2*n + 2, (h)^(2), t), t = 0..(Pi)/(2)) = ((hB[2])^(2*n + 2)((h)^(2)))/(2*subs( temp=0, diff( MathieuSE(2*n + 2, (h)^(2), temp), temp$(1) ) ))*MathieuSE(2*n + 2, (h)^(2), z)
Divide[2,Pi]*Integrate[Cos[z]*Cos[t]*Sinh[2*h*Sin[z]*Sin[t]]*MathieuS[2*n + 2, (h)^(2), t], {t, 0, Divide[Pi,2]}, GenerateConditions->None] == Divide[(Subscript[hB, 2])^(2*n + 2)[(h)^(2)],2*(D[MathieuS[2*n + 2, (h)^(2), temp], {temp, 1}]/.temp-> 0)]*MathieuS[2*n + 2, (h)^(2), z]
Failure Aborted Skipped - Because timed out Skipped - Because timed out