28.26: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/28.26.E3 28.26.E3] || [[Item:Q8419|<math>\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi = 2*h*sinh(z)-(m +(1)/(2))*arctan(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi] == 2*h*Sinh[z]-(m +Divide[1,2])*ArcTan[Sinh[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.309060595-.9846819085*I
| [https://dlmf.nist.gov/28.26.E3 28.26.E3] || <math qid="Q8419">\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi = 2*h*sinh(z)-(m +(1)/(2))*arctan(sinh(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi] == 2*h*Sinh[z]-(m +Divide[1,2])*ArcTan[Sinh[z]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.309060595-.9846819085*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.148731429-.6275515075*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.148731429-.6275515075*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.3090605953108105, -0.9846819068983852]
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.3090605953108105, -0.9846819068983852]

Latest revision as of 12:08, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.26.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}}
\phi = 2h\sinh@@{z}-\left(m+\tfrac{1}{2}\right)\atan@{\sinh@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
phi = 2*h*sinh(z)-(m +(1)/(2))*arctan(sinh(z))
\[Phi] == 2*h*Sinh[z]-(m +Divide[1,2])*ArcTan[Sinh[z]]
Failure Failure
Failed [300 / 300]
Result: 1.309060595-.9846819085*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}

Result: 2.148731429-.6275515075*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.3090605953108105, -0.9846819068983852]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.1487314296378672, -0.6275515058300114]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data