32.10: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E2 32.10.E2] | | | [https://dlmf.nist.gov/32.10.E2 32.10.E2] || <math qid="Q9402">\alpha = n+\tfrac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\alpha = n+\tfrac{1}{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">alpha = n +(1)/(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Alpha] == n +Divide[1,2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E5 32.10.E5] | | | [https://dlmf.nist.gov/32.10.E5 32.10.E5] || <math qid="Q9405">\phi(z) = C_{1}\AiryAi@{-2^{-1/3}z}+C_{2}\AiryBi@{-2^{-1/3}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(z) = C_{1}\AiryAi@{-2^{-1/3}z}+C_{2}\AiryBi@{-2^{-1/3}z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(z) = C[1]*AiryAi(- (2)^(- 1/3)* z)+ C[2]*AiryBi(- (2)^(- 1/3)* z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][z] == Subscript[C, 1]*AiryAi[- (2)^(- 1/3)* z]+ Subscript[C, 2]*AiryBi[- (2)^(- 1/3)* z]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2986692739+.5787509238*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3018910357e-1+.1740730853*I | Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3018910357e-1+.1740730853*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.29866927421000106, 0.5787509234724151] | Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.29866927421000106, 0.5787509234724151] | ||
Line 22: | Line 22: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E6 32.10.E6] | | | [https://dlmf.nist.gov/32.10.E6 32.10.E6] || <math qid="Q9406">w(z;\tfrac{3}{2}) = \Phi-\dfrac{1}{2\Phi^{2}+z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w(z;\tfrac{3}{2}) = \Phi-\dfrac{1}{2\Phi^{2}+z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w(z ;(3)/(2)) = Phi -(1)/(2*(Phi)^(2)+ z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[z ;Divide[3,2]] == \[CapitalPhi]-Divide[1,2*\[CapitalPhi]^(2)+ z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E7 32.10.E7] | | | [https://dlmf.nist.gov/32.10.E7 32.10.E7] || <math qid="Q9407">w(z;\tfrac{5}{2}) = \dfrac{1}{2\Phi^{2}+z}+\dfrac{2z\Phi^{2}+\Phi+z^{2}}{4\Phi^{3}+2z\Phi-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w(z;\tfrac{5}{2}) = \dfrac{1}{2\Phi^{2}+z}+\dfrac{2z\Phi^{2}+\Phi+z^{2}}{4\Phi^{3}+2z\Phi-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w(z ;(5)/(2)) = (1)/(2*(Phi)^(2)+ z)+(2*z*(Phi)^(2)+ Phi + (z)^(2))/(4*(Phi)^(3)+ 2*z*Phi - 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[z ;Divide[5,2]] == Divide[1,2*\[CapitalPhi]^(2)+ z]+Divide[2*z*\[CapitalPhi]^(2)+ \[CapitalPhi]+ (z)^(2),4*\[CapitalPhi]^(3)+ 2*z*\[CapitalPhi]- 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E8 32.10.E8] | | | [https://dlmf.nist.gov/32.10.E8 32.10.E8] || <math qid="Q9408">w(z;n+\tfrac{1}{2}) = \deriv{}{z}\left(\ln@{\frac{\tau_{n}(z)}{\tau_{n+1}(z)}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z;n+\tfrac{1}{2}) = \deriv{}{z}\left(\ln@{\frac{\tau_{n}(z)}{\tau_{n+1}(z)}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z ; n +(1)/(2)) = diff(ln((tau[n](z))/(tau[n + 1](z))), z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z ; n +Divide[1,2]] == D[Log[Divide[Subscript[\[Tau], n][z],Subscript[\[Tau], n + 1][z]]], z]</syntaxhighlight> || Translation Error || Translation Error || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E10 32.10.E10] | | | [https://dlmf.nist.gov/32.10.E10 32.10.E10] || <math qid="Q9410">w(z;-n-\tfrac{1}{2}) = -w(z;n+\tfrac{1}{2})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w(z;-n-\tfrac{1}{2}) = -w(z;n+\tfrac{1}{2})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w(z ; - n -(1)/(2)) = - w(z ; n +(1)/(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[z ; - n -Divide[1,2]] == - w[z ; n +Divide[1,2]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E11 32.10.E11] | | | [https://dlmf.nist.gov/32.10.E11 32.10.E11] || <math qid="Q9411">\varepsilon_{1}\alpha+\varepsilon_{2}\beta = 4n+2</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\varepsilon_{1}\alpha+\varepsilon_{2}\beta = 4n+2</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">varepsilon[1]*alpha + varepsilon[2]*beta = 4*n + 2</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[CurlyEpsilon], 1]*\[Alpha]+ Subscript[\[CurlyEpsilon], 2]*\[Beta] == 4*n + 2</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E14 32.10.E14] | | | [https://dlmf.nist.gov/32.10.E14 32.10.E14] || <math qid="Q9414">\phi(z) = z^{\nu}\left(C_{1}\BesselJ{\nu}@{\zeta}+C_{2}\BesselY{\nu}@{\zeta}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(z) = z^{\nu}\left(C_{1}\BesselJ{\nu}@{\zeta}+C_{2}\BesselY{\nu}@{\zeta}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>phi(z) = (z)^(nu)*(C[1]*BesselJ(nu, zeta)+ C[2]*BesselY(nu, zeta))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][z] == (z)^\[Nu]*(Subscript[C, 1]*BesselJ[\[Nu], \[Zeta]]+ Subscript[C, 2]*BesselY[\[Nu], \[Zeta]])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6857713611+1.049278090*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1639325500+1.038275666*I | Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1639325500+1.038275666*I | ||
Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6857713606630202, 1.0492780901981935] | Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.6857713606630202, 1.0492780901981935] | ||
Line 38: | Line 38: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E15 32.10.E15] | | | [https://dlmf.nist.gov/32.10.E15 32.10.E15] || <math qid="Q9415">\beta = -2(2n+1+\varepsilon\alpha)^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta = -2(2n+1+\varepsilon\alpha)^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta = - 2*(2*n + 1 + varepsilon*alpha)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Beta] == - 2*(2*n + 1 + \[CurlyEpsilon]*\[Alpha])^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E16 32.10.E16] | | | [https://dlmf.nist.gov/32.10.E16 32.10.E16] || <math qid="Q9416">\beta = -2n^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\beta = -2n^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">beta = - 2*(n)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Beta] == - 2*(n)^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E19 32.10.E19] | | | [https://dlmf.nist.gov/32.10.E19 32.10.E19] || <math qid="Q9419">\phi(z) = \left(C_{1}\paraU@{a}{\sqrt{2}z}+C_{2}\paraV@{a}{\sqrt{2}z}\right)\exp@{\tfrac{1}{2}\varepsilon z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(z) = \left(C_{1}\paraU@{a}{\sqrt{2}z}+C_{2}\paraV@{a}{\sqrt{2}z}\right)\exp@{\tfrac{1}{2}\varepsilon z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(z) = (C[1]*CylinderU(a, sqrt(2)*z)+ C[2]*CylinderV(a, sqrt(2)*z))*exp((1)/(2)*varepsilon*(z)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][z] == (Subscript[C, 1]*ParabolicCylinderD[- 1/2 -(a), Sqrt[2]*z]+ Subscript[C, 2]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, Sqrt[2]*z] + ParabolicCylinderD[-(a) - 1/2, -(Sqrt[2]*z)]))*Exp[Divide[1,2]*\[CurlyEpsilon]*(z)^(2)]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6213533818-.8057984780*I | ||
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.542195596-1.017130546*I | Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.542195596-1.017130546*I | ||
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-1.165517214154348, -0.5387865015105858], Plus[Complex[0.9001043151387932, 0.6347232005321619], Times[Complex[-6.562724044143109*^-17, -2.768827103772538*^-17], GAMMA[-1.0]]]]] | Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-1.165517214154348, -0.5387865015105858], Plus[Complex[0.9001043151387932, 0.6347232005321619], Times[Complex[-6.562724044143109*^-17, -2.768827103772538*^-17], GAMMA[-1.0]]]]] | ||
Line 48: | Line 48: | ||
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ε, 2], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ε, 2], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E20 32.10.E20] | | | [https://dlmf.nist.gov/32.10.E20 32.10.E20] || <math qid="Q9420">w(z;-m,-2(m-1)^{2}) = -\frac{\HermitepolyH{m-1}'@{z}}{\HermitepolyH{m-1}@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z;-m,-2(m-1)^{2}) = -\frac{\HermitepolyH{m-1}'@{z}}{\HermitepolyH{m-1}@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z ; - m , - 2*(m - 1)^(2)) = -(diff( HermiteH(m - 1, z), z$(1) ))/(HermiteH(m - 1, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z ; - m , - 2*(m - 1)^(2)] == -Divide[D[HermiteH[m - 1, z], {z, 1}],HermiteH[m - 1, z]]</syntaxhighlight> || Translation Error || Translation Error || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E21 32.10.E21] | | | [https://dlmf.nist.gov/32.10.E21 32.10.E21] || <math qid="Q9421">w(z;-m,-2(m+1)^{2}) = -2z+\frac{\HermitepolyH{m}'@{z}}{\HermitepolyH{m}@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w(z;-m,-2(m+1)^{2}) = -2z+\frac{\HermitepolyH{m}'@{z}}{\HermitepolyH{m}@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w(z ; - m , - 2*(m + 1)^(2)) = - 2*z +(diff( HermiteH(m, z), z$(1) ))/(HermiteH(m, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w[z ; - m , - 2*(m + 1)^(2)] == - 2*z +Divide[D[HermiteH[m, z], {z, 1}],HermiteH[m, z]]</syntaxhighlight> || Translation Error || Translation Error || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E23 32.10.E23] | | | [https://dlmf.nist.gov/32.10.E23 32.10.E23] || <math qid="Q9423">a+b+\varepsilon_{3}\gamma = 2n+1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a+b+\varepsilon_{3}\gamma = 2n+1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a + b + varepsilon[3]*gamma = 2*n + 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a + b + Subscript[\[CurlyEpsilon], 3]*\[Gamma] == 2*n + 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E24 32.10.E24] | | | [https://dlmf.nist.gov/32.10.E24 32.10.E24] || <math qid="Q9424">(a-n)(b-n) = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(a-n)(b-n) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - n)*(b - n) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(a - n)*(b - n) == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E27 32.10.E27] | | | [https://dlmf.nist.gov/32.10.E27 32.10.E27] || <math qid="Q9427">\phi(z) = \frac{C_{1}\WhittakerconfhyperM{\kappa}{\mu}@{\zeta}+C_{2}\WhittakerconfhyperW{\kappa}{\mu}@{\zeta}}{\zeta^{(a-b+1)/2}}\exp@{\tfrac{1}{2}\zeta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(z) = \frac{C_{1}\WhittakerconfhyperM{\kappa}{\mu}@{\zeta}+C_{2}\WhittakerconfhyperW{\kappa}{\mu}@{\zeta}}{\zeta^{(a-b+1)/2}}\exp@{\tfrac{1}{2}\zeta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(z) = (C[1]*WhittakerM(kappa, mu, zeta)+ C[2]*WhittakerW(kappa, mu, zeta))/((zeta)^((a - b + 1)/2))*exp((1)/(2)*zeta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][z] == Divide[Subscript[C, 1]*WhittakerM[\[Kappa], \[Mu], \[Zeta]]+ Subscript[C, 2]*WhittakerW[\[Kappa], \[Mu], \[Zeta]],\[Zeta]^((a - b + 1)/2)]*Exp[Divide[1,2]*\[Zeta]]</syntaxhighlight> || Failure || Failure || Manual Skip! || Skipped - Because timed out | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E28 32.10.E28] | | | [https://dlmf.nist.gov/32.10.E28 32.10.E28] || <math qid="Q9428">a+b+c+d = 2n+1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a+b+c+d = 2n+1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a + b + c + d = 2*n + 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a + b + c + d == 2*n + 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10#Ex2 32.10#Ex2] | | | [https://dlmf.nist.gov/32.10#Ex2 32.10#Ex2] || <math qid="Q9431">\zeta = \frac{1}{1-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\zeta = \frac{1}{1-z}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">zeta = (1)/(1 - z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Zeta] == Divide[1,1 - z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E31 32.10.E31] | | | [https://dlmf.nist.gov/32.10.E31 32.10.E31] || <math qid="Q9432">\phi(\zeta) = C_{1}\hyperF@{b}{-a}{b+c}{\zeta}+C_{2}\zeta^{-b+1-c}\*\hyperF@{-a-b-c+1}{-c+1}{2-b-c}{\zeta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\phi(\zeta) = C_{1}\hyperF@{b}{-a}{b+c}{\zeta}+C_{2}\zeta^{-b+1-c}\*\hyperF@{-a-b-c+1}{-c+1}{2-b-c}{\zeta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(zeta) = C[1]*hypergeom([b, - a], [b + c], zeta)+ C[2]*(zeta)^(- b + 1 - c)* hypergeom([- a - b - c + 1, - c + 1], [2 - b - c], zeta)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Phi][\[Zeta]] == Subscript[C, 1]*Hypergeometric2F1[b, - a, b + c, \[Zeta]]+ Subscript[C, 2]*\[Zeta]^(- b + 1 - c)* Hypergeometric2F1[- a - b - c + 1, - c + 1, 2 - b - c, \[Zeta]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | ||
Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I | ||
Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E32 32.10.E32] | | | [https://dlmf.nist.gov/32.10.E32 32.10.E32] || <math qid="Q9433">u = \int_{0}^{\Lambda}\frac{\diff{t}}{\sqrt{t(t-1)(t-z)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u = \int_{0}^{\Lambda}\frac{\diff{t}}{\sqrt{t(t-1)(t-z)}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u = int((1)/(sqrt(t*(t - 1)*(t - z))), t = 0..Lambda)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u == Integrate[Divide[1,Sqrt[t*(t - 1)*(t - z)]], {t, 0, \[CapitalLambda]}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/32.10.E33 32.10.E33] | | | [https://dlmf.nist.gov/32.10.E33 32.10.E33] || <math qid="Q9434">z(1-z)\deriv[2]{\phi}{z}+(1-2z)\deriv{\phi}{z}-\tfrac{1}{4}\phi = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z(1-z)\deriv[2]{\phi}{z}+(1-2z)\deriv{\phi}{z}-\tfrac{1}{4}\phi = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>z*(1 - z)*diff(phi, [z$(2)])+(1 - 2*z)*diff(phi, z)-(1)/(4)*phi = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>z*(1 - z)*D[\[Phi], {z, 2}]+(1 - 2*z)*D[\[Phi], z]-Divide[1,4]*\[Phi] == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.2165063510-.1250000000*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2165063510-.1250000000*I | Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.2165063510-.1250000000*I | ||
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.21650635094610968, -0.12499999999999999] | Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [70 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.21650635094610968, -0.12499999999999999] | ||
Line 74: | Line 74: | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/32.10.E34 32.10.E34] | | | [https://dlmf.nist.gov/32.10.E34 32.10.E34] || <math qid="Q9435">w(z;0,0,0,\tfrac{1}{2}) = \Lambda(C_{1}\phi_{1}+C_{2}\phi_{2},z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>w(z;0,0,0,\tfrac{1}{2}) = \Lambda(C_{1}\phi_{1}+C_{2}\phi_{2},z)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w(z ; 0 , 0 , 0 ,(1)/(2)) = Lambda(C[1]*phi[1]+ C[2]*phi[2], z)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">w[z ; 0 , 0 , 0 ,Divide[1,2]] == \[CapitalLambda][Subscript[C, 1]*Subscript[\[Phi], 1]+ Subscript[C, 2]*Subscript[\[Phi], 2], z]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:13, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
32.10.E2 | \alpha = n+\tfrac{1}{2} |
|
alpha = n +(1)/(2) |
\[Alpha] == n +Divide[1,2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E5 | \phi(z) = C_{1}\AiryAi@{-2^{-1/3}z}+C_{2}\AiryBi@{-2^{-1/3}z} |
|
phi(z) = C[1]*AiryAi(- (2)^(- 1/3)* z)+ C[2]*AiryBi(- (2)^(- 1/3)* z)
|
\[Phi][z] == Subscript[C, 1]*AiryAi[- (2)^(- 1/3)* z]+ Subscript[C, 2]*AiryBi[- (2)^(- 1/3)* z]
|
Failure | Failure | Failed [300 / 300] Result: -.2986692739+.5787509238*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}
Result: .3018910357e-1+.1740730853*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.29866927421000106, 0.5787509234724151]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.03018910341830547, 0.174073084997731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
32.10.E6 | w(z;\tfrac{3}{2}) = \Phi-\dfrac{1}{2\Phi^{2}+z} |
|
w(z ;(3)/(2)) = Phi -(1)/(2*(Phi)^(2)+ z) |
w[z ;Divide[3,2]] == \[CapitalPhi]-Divide[1,2*\[CapitalPhi]^(2)+ z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E7 | w(z;\tfrac{5}{2}) = \dfrac{1}{2\Phi^{2}+z}+\dfrac{2z\Phi^{2}+\Phi+z^{2}}{4\Phi^{3}+2z\Phi-1} |
|
w(z ;(5)/(2)) = (1)/(2*(Phi)^(2)+ z)+(2*z*(Phi)^(2)+ Phi + (z)^(2))/(4*(Phi)^(3)+ 2*z*Phi - 1) |
w[z ;Divide[5,2]] == Divide[1,2*\[CapitalPhi]^(2)+ z]+Divide[2*z*\[CapitalPhi]^(2)+ \[CapitalPhi]+ (z)^(2),4*\[CapitalPhi]^(3)+ 2*z*\[CapitalPhi]- 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E8 | w(z;n+\tfrac{1}{2}) = \deriv{}{z}\left(\ln@{\frac{\tau_{n}(z)}{\tau_{n+1}(z)}}\right) |
|
w(z ; n +(1)/(2)) = diff(ln((tau[n](z))/(tau[n + 1](z))), z)
|
w[z ; n +Divide[1,2]] == D[Log[Divide[Subscript[\[Tau], n][z],Subscript[\[Tau], n + 1][z]]], z]
|
Translation Error | Translation Error | - | - |
32.10.E10 | w(z;-n-\tfrac{1}{2}) = -w(z;n+\tfrac{1}{2}) |
|
w(z ; - n -(1)/(2)) = - w(z ; n +(1)/(2)) |
w[z ; - n -Divide[1,2]] == - w[z ; n +Divide[1,2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E11 | \varepsilon_{1}\alpha+\varepsilon_{2}\beta = 4n+2 |
|
varepsilon[1]*alpha + varepsilon[2]*beta = 4*n + 2 |
Subscript[\[CurlyEpsilon], 1]*\[Alpha]+ Subscript[\[CurlyEpsilon], 2]*\[Beta] == 4*n + 2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E14 | \phi(z) = z^{\nu}\left(C_{1}\BesselJ{\nu}@{\zeta}+C_{2}\BesselY{\nu}@{\zeta}\right) |
phi(z) = (z)^(nu)*(C[1]*BesselJ(nu, zeta)+ C[2]*BesselY(nu, zeta))
|
\[Phi][z] == (z)^\[Nu]*(Subscript[C, 1]*BesselJ[\[Nu], \[Zeta]]+ Subscript[C, 2]*BesselY[\[Nu], \[Zeta]])
|
Failure | Failure | Failed [300 / 300] Result: .6857713611+1.049278090*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}
Result: -.1639325500+1.038275666*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.6857713606630202, 1.0492780901981935]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.16393255022963316, 1.0382756660889538]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
32.10.E15 | \beta = -2(2n+1+\varepsilon\alpha)^{2} |
|
beta = - 2*(2*n + 1 + varepsilon*alpha)^(2) |
\[Beta] == - 2*(2*n + 1 + \[CurlyEpsilon]*\[Alpha])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E16 | \beta = -2n^{2} |
|
beta = - 2*(n)^(2) |
\[Beta] == - 2*(n)^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E19 | \phi(z) = \left(C_{1}\paraU@{a}{\sqrt{2}z}+C_{2}\paraV@{a}{\sqrt{2}z}\right)\exp@{\tfrac{1}{2}\varepsilon z^{2}} |
|
phi(z) = (C[1]*CylinderU(a, sqrt(2)*z)+ C[2]*CylinderV(a, sqrt(2)*z))*exp((1)/(2)*varepsilon*(z)^(2))
|
\[Phi][z] == (Subscript[C, 1]*ParabolicCylinderD[- 1/2 -(a), Sqrt[2]*z]+ Subscript[C, 2]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, Sqrt[2]*z] + ParabolicCylinderD[-(a) - 1/2, -(Sqrt[2]*z)]))*Exp[Divide[1,2]*\[CurlyEpsilon]*(z)^(2)]
|
Failure | Failure | Failed [300 / 300] Result: .6213533818-.8057984780*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 1}
Result: 1.542195596-1.017130546*I
Test Values: {a = -3/2, phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I, varepsilon = 2}
... skip entries to safe data |
Failed [300 / 300]
Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-1.165517214154348, -0.5387865015105858], Plus[Complex[0.9001043151387932, 0.6347232005321619], Times[Complex[-6.562724044143109*^-17, -2.768827103772538*^-17], GAMMA[-1.0]]]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ε, 1], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.5000000000000001, 0.8660254037844386], Times[Complex[-1.0681394822800956, -1.2559298845291706], Plus[Complex[0.9001043151387932, 0.6347232005321619], Times[Complex[-6.562724044143109*^-17, -2.768827103772538*^-17], GAMMA[-1.0]]]]]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ε, 2], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
32.10.E20 | w(z;-m,-2(m-1)^{2}) = -\frac{\HermitepolyH{m-1}'@{z}}{\HermitepolyH{m-1}@{z}} |
|
w(z ; - m , - 2*(m - 1)^(2)) = -(diff( HermiteH(m - 1, z), z$(1) ))/(HermiteH(m - 1, z))
|
w[z ; - m , - 2*(m - 1)^(2)] == -Divide[D[HermiteH[m - 1, z], {z, 1}],HermiteH[m - 1, z]]
|
Translation Error | Translation Error | - | - |
32.10.E21 | w(z;-m,-2(m+1)^{2}) = -2z+\frac{\HermitepolyH{m}'@{z}}{\HermitepolyH{m}@{z}} |
|
w(z ; - m , - 2*(m + 1)^(2)) = - 2*z +(diff( HermiteH(m, z), z$(1) ))/(HermiteH(m, z))
|
w[z ; - m , - 2*(m + 1)^(2)] == - 2*z +Divide[D[HermiteH[m, z], {z, 1}],HermiteH[m, z]]
|
Translation Error | Translation Error | - | - |
32.10.E23 | a+b+\varepsilon_{3}\gamma = 2n+1 |
|
a + b + varepsilon[3]*gamma = 2*n + 1 |
a + b + Subscript[\[CurlyEpsilon], 3]*\[Gamma] == 2*n + 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E24 | (a-n)(b-n) = 0 |
|
(a - n)*(b - n) = 0 |
(a - n)*(b - n) == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E27 | \phi(z) = \frac{C_{1}\WhittakerconfhyperM{\kappa}{\mu}@{\zeta}+C_{2}\WhittakerconfhyperW{\kappa}{\mu}@{\zeta}}{\zeta^{(a-b+1)/2}}\exp@{\tfrac{1}{2}\zeta} |
|
phi(z) = (C[1]*WhittakerM(kappa, mu, zeta)+ C[2]*WhittakerW(kappa, mu, zeta))/((zeta)^((a - b + 1)/2))*exp((1)/(2)*zeta)
|
\[Phi][z] == Divide[Subscript[C, 1]*WhittakerM[\[Kappa], \[Mu], \[Zeta]]+ Subscript[C, 2]*WhittakerW[\[Kappa], \[Mu], \[Zeta]],\[Zeta]^((a - b + 1)/2)]*Exp[Divide[1,2]*\[Zeta]]
|
Failure | Failure | Manual Skip! | Skipped - Because timed out |
32.10.E28 | a+b+c+d = 2n+1 |
|
a + b + c + d = 2*n + 1 |
a + b + c + d == 2*n + 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10#Ex2 | \zeta = \frac{1}{1-z} |
|
zeta = (1)/(1 - z) |
\[Zeta] == Divide[1,1 - z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
32.10.E31 | \phi(\zeta) = C_{1}\hyperF@{b}{-a}{b+c}{\zeta}+C_{2}\zeta^{-b+1-c}\*\hyperF@{-a-b-c+1}{-c+1}{2-b-c}{\zeta} |
|
phi(zeta) = C[1]*hypergeom([b, - a], [b + c], zeta)+ C[2]*(zeta)^(- b + 1 - c)* hypergeom([- a - b - c + 1, - c + 1], [2 - b - c], zeta)
|
\[Phi][\[Zeta]] == Subscript[C, 1]*Hypergeometric2F1[b, - a, b + c, \[Zeta]]+ Subscript[C, 2]*\[Zeta]^(- b + 1 - c)* Hypergeometric2F1[- a - b - c + 1, - c + 1, 2 - b - c, \[Zeta]]
|
Failure | Failure | Failed [300 / 300] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = -3/2, phi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, C[1] = 1/2*3^(1/2)+1/2*I, C[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Skipped - Because timed out |
32.10.E32 | u = \int_{0}^{\Lambda}\frac{\diff{t}}{\sqrt{t(t-1)(t-z)}} |
|
u = int((1)/(sqrt(t*(t - 1)*(t - z))), t = 0..Lambda)
|
u == Integrate[Divide[1,Sqrt[t*(t - 1)*(t - z)]], {t, 0, \[CapitalLambda]}, GenerateConditions->None]
|
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |
32.10.E33 | z(1-z)\deriv[2]{\phi}{z}+(1-2z)\deriv{\phi}{z}-\tfrac{1}{4}\phi = 0 |
|
z*(1 - z)*diff(phi, [z$(2)])+(1 - 2*z)*diff(phi, z)-(1)/(4)*phi = 0
|
z*(1 - z)*D[\[Phi], {z, 2}]+(1 - 2*z)*D[\[Phi], z]-Divide[1,4]*\[Phi] == 0
|
Failure | Failure | Failed [70 / 70] Result: -.2165063510-.1250000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -.2165063510-.1250000000*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [70 / 70]
Result: Complex[-0.21650635094610968, -0.12499999999999999]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.12499999999999994, -0.21650635094610968]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ϕ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
32.10.E34 | w(z;0,0,0,\tfrac{1}{2}) = \Lambda(C_{1}\phi_{1}+C_{2}\phi_{2},z) |
|
w(z ; 0 , 0 , 0 ,(1)/(2)) = Lambda(C[1]*phi[1]+ C[2]*phi[2], z) |
w[z ; 0 , 0 , 0 ,Divide[1,2]] == \[CapitalLambda][Subscript[C, 1]*Subscript[\[Phi], 1]+ Subscript[C, 2]*Subscript[\[Phi], 2], z] |
Skipped - no semantic math | Skipped - no semantic math | - | - |