Verifying DLMF with Maple and Mathematica: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
m Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 108: | Line 108: | ||
|} | |} | ||
{| class="wikitable sortable" | {| class="wikitable sortable" style="text-align: right;" | ||
! colspan="5" | | ! colspan="5" | | ||
! colspan="6" | Symbolic | ! colspan="6" | Symbolic | ||
Line 122: | Line 122: | ||
! 2C !! Total !! Base !! Maple !! Math !! S !! % !! F !! S !! % !! F !! S !! % !! F !! [P/T] !! A !! E !! S !! % !! F !! [P/T] !! A !! E | ! 2C !! Total !! Base !! Maple !! Math !! S !! % !! F !! S !! % !! F !! S !! % !! F !! [P/T] !! A !! E !! S !! % !! F !! [P/T] !! A !! E | ||
|- | |- | ||
| 1. [[Results of Algebraic and Analytic Methods|AL]] || 227 || 60 || 102 || 103 || 36 || 35.3% || 60 || 34 || 33.0% || 69 || 14 || 23.3% || 35 || [ 12 / 23] || 7 || 4 || 14 || 20.3% || 40 || [ 9 / 31] || 11 || 4 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 1. [[Results of Algebraic and Analytic Methods|AL]] | ||
| style="border-right: solid 1px #000;" | 227 | |||
|| 60 || 102 | |||
| style="border-right: solid 1px #000;" | 103 | |||
|| 36 || 35.3% | |||
| style="border-right: solid 2px #aaa;" | 60 | |||
|| 34 || 33.0% | |||
| style="border-right: solid 1px #000;" | 69 | |||
|| 14 || 23.3% || 35 || [ 12 / 23] || 7 | |||
| style="border-right: solid 2px #aaa;" | 4 | |||
|| 14 || 20.3% || 40 || [ 9 / 31] || 11 || 4 | |||
|- | |- | ||
| 2. [[Results of Asymptotic Approximations|AS]] || 136 || 33 || 65 || 65 || 6 || 9.2% || 47 || 6 || 9.2% || 59 || 7 || 14.9% || 33 || [ 5 / 28] || 1 || 5 || 4 || 6.8% || 38 || [ 6 / 32] || 7 || 9 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 2. [[Results of Asymptotic Approximations|AS]] | ||
| style="border-right: solid 1px #000;" | 136 | |||
|| 33 || 65 | |||
| style="border-right: solid 1px #000;" | 65 | |||
|| 6 || 9.2% | |||
| style="border-right: solid 2px #aaa;" | 47 | |||
|| 6 || 9.2% | |||
| style="border-right: solid 1px #000;" | 59 | |||
|| 7 || 14.9% || 33 || [ 5 / 28] || 1 | |||
| style="border-right: solid 2px #aaa;" | 5 | |||
|| 4 || 6.8% || 38 || [ 6 / 32] || 7 || 9 | |||
|- | |- | ||
| 3. [[Results of Numerical Methods|NM]] || 53 || 36 || 40 || 40 || 6 || 15.0% || 31 || 5 || 12.5% || 35 || 1 || 3.2% || 27 || [ 9 / 18] || 0 || 2 || 0 || 0.0% || 29 || [ 8 / 21] || 6 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 3. [[Results of Numerical Methods|NM]] | ||
| style="border-right: solid 1px #000;" | 53 | |||
|| 36 || 40 | |||
| style="border-right: solid 1px #000;" | 40 | |||
|| 6 || 15.0% | |||
| style="border-right: solid 2px #aaa;" | 31 | |||
|| 5 || 12.5% | |||
| style="border-right: solid 1px #000;" | 35 | |||
|| 1 || 3.2% || 27 || [ 9 / 18] || 0 | |||
| style="border-right: solid 2px #aaa;" | 2 | |||
|| 0 || 0.0% || 29 || [ 8 / 21] || 6 || 0 | |||
|- | |- | ||
| 4. [[Results of Elementary Functions|EF]] || 569 || 353 || 494 || 564 || 270 || 54.7% || 221 || 304 || 53.9% || 260 || 88 || 39.8% || 126 || [ 64 / 62] || 0 || 6 || 110 || 42.3% || 146 || [ 55 / 91] || 2 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 4. [[Results of Elementary Functions|EF]] | ||
| style="border-right: solid 1px #000;" | 569 | |||
|| 353 || 494 | |||
| style="border-right: solid 1px #000;" | 564 | |||
|| 270 || 54.7% | |||
| style="border-right: solid 2px #aaa;" | 221 | |||
|| 304 || 53.9% | |||
| style="border-right: solid 1px #000;" | 260 | |||
|| 88 || 39.8% || 126 || [ 64 / 62] || 0 | |||
| style="border-right: solid 2px #aaa;" | 6 | |||
|| 110 || 42.3% || 146 || [ 55 / 91] || 2 || 0 | |||
|- | |- | ||
| 5. [[Results of Gamma Function|GA]] || 144 || 38 || 130 || 139 || 41 || 31.5% || 76 || 65 || 46.8% || 74 || 39 || 51.3% || 25 || [ 12 / 13] || 4 || 8 || 30 || 40.5% || 20 || [ 9 / 11] || 13 || 9 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 5. [[Results of Gamma Function|GA]] | ||
| style="border-right: solid 1px #000;" | 144 | |||
|| 38 || 130 | |||
| style="border-right: solid 1px #000;" | 139 | |||
|| 41 || 31.5% | |||
| style="border-right: solid 2px #aaa;" | 76 | |||
|| 65 || 46.8% | |||
| style="border-right: solid 1px #000;" | 74 | |||
|| 39 || 51.3% || 25 || [ 12 / 13] || 4 | |||
| style="border-right: solid 2px #aaa;" | 8 | |||
|| 30 || 40.5% || 20 || [ 9 / 11] || 13 || 9 | |||
|- | |- | ||
| 6. [[Results of Exponential, Logarithmic, Sine, and Cosine Integrals|EX]] || 107 || 21 || 56 || 77 || 13 || 23.2% || 43 || 18 || 23.4% || 59 || 10 || 23.2% || 31 || [ 13 / 18] || 0 || 2 || 23 || 39.0% || 32 || [ 6 / 26] || 4 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 6. [[Results of Exponential, Logarithmic, Sine, and Cosine Integrals|EX]] | ||
| style="border-right: solid 1px #000;" | 107 | |||
|| 21 || 56 | |||
| style="border-right: solid 1px #000;" | 77 | |||
|| 13 || 23.2% | |||
| style="border-right: solid 2px #aaa;" | 43 | |||
|| 18 || 23.4% | |||
| style="border-right: solid 1px #000;" | 59 | |||
|| 10 || 23.2% || 31 || [ 13 / 18] || 0 | |||
| style="border-right: solid 2px #aaa;" | 2 | |||
|| 23 || 39.0% || 32 || [ 6 / 26] || 4 || 0 | |||
|- | |- | ||
| 7. [[Results of Error Functions, Dawson’s and Fresnel Integrals|ER]] || 149 || 35 || 101 || 120 || 52 || 51.5% || 47 || 45 || 37.5% || 75 || 21 || 44.7% || 23 || [ 10 / 13] || 2 || 1 || 21 || 28.0% || 43 || [ 13 / 30] || 9 || 1 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 7. [[Results of Error Functions, Dawson’s and Fresnel Integrals|ER]] | ||
| style="border-right: solid 1px #000;" | 149 | |||
|| 35 || 101 | |||
| style="border-right: solid 1px #000;" | 120 | |||
|| 52 || 51.5% | |||
| style="border-right: solid 2px #aaa;" | 47 | |||
|| 45 || 37.5% | |||
| style="border-right: solid 1px #000;" | 75 | |||
|| 21 || 44.7% || 23 || [ 10 / 13] || 2 | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 21 || 28.0% || 43 || [ 13 / 30] || 9 || 1 | |||
|- | |- | ||
| 8. [[Results of Incomplete Gamma and Related Functions|IG]] || 204 || 84 || 160 || 163 || 51 || 31.9% || 102 || 65 || 39.9% || 98 || 27 || 26.5% || 61 || [ 20 / 41] || 9 || 5 || 22 || 22.4% || 44 || [ 19 / 25] || 16 || 15 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 8. [[Results of Incomplete Gamma and Related Functions|IG]] | ||
| style="border-right: solid 1px #000;" | 204 | |||
|| 84 || 160 | |||
| style="border-right: solid 1px #000;" | 163 | |||
|| 51 || 31.9% | |||
| style="border-right: solid 2px #aaa;" | 102 | |||
|| 65 || 39.9% | |||
| style="border-right: solid 1px #000;" | 98 | |||
|| 27 || 26.5% || 61 || [ 20 / 41] || 9 | |||
| style="border-right: solid 2px #aaa;" | 5 | |||
|| 22 || 22.4% || 44 || [ 19 / 25] || 16 || 15 | |||
|- | |- | ||
| 9. [[Results of Airy and Related Functions|AI]] || 235 || 36 || 180 || 179 || 54 || 30.0% || 124 || 69 || 38.5% || 110 || 34 || 27.4% || 75 || [ 41 / 34] || 4 || 8 || 30 || 27.3% || 58 || [ 38 / 20] || 14 || 7 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 9. [[Results of Airy and Related Functions|AI]] | ||
| style="border-right: solid 1px #000;" | 235 | |||
|| 36 || 180 | |||
| style="border-right: solid 1px #000;" | 179 | |||
|| 54 || 30.0% | |||
| style="border-right: solid 2px #aaa;" | 124 | |||
|| 69 || 38.5% | |||
| style="border-right: solid 1px #000;" | 110 | |||
|| 34 || 27.4% || 75 || [ 41 / 34] || 4 | |||
| style="border-right: solid 2px #aaa;" | 8 | |||
|| 30 || 27.3% || 58 || [ 38 / 20] || 14 || 7 | |||
|- | |- | ||
| 10. BS [[Results of Bessel Functions I|I]] & [[Results of Bessel Functions II|II]] || 653 || 143 || 392 || 486 || 80 || 20.4% || 209 || 115 || 23.7% || 371 || 86 || 41.1% || 59 || [ 41 / 18] || 52 || 12 || 90 || 24.2% || 151 || [ 57 / 94] || 92 || 18 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 10. BS [[Results of Bessel Functions I|I]] & [[Results of Bessel Functions II|II]] | ||
| style="border-right: solid 1px #000;" | 653 | |||
|| 143 || 392 | |||
| style="border-right: solid 1px #000;" | 486 | |||
|| 80 || 20.4% | |||
| style="border-right: solid 2px #aaa;" | 209 | |||
|| 115 || 23.7% | |||
| style="border-right: solid 1px #000;" | 371 | |||
|| 86 || 41.1% || 59 || [ 41 / 18] || 52 | |||
| style="border-right: solid 2px #aaa;" | 12 | |||
|| 90 || 24.2% || 151 || [ 57 / 94] || 92 || 18 | |||
|- | |- | ||
| 11. [[Results of Struve and Related Functions|ST]] || 124 || 48 || 121 || 112 || 39 || 32.2% || 73 || 36 || 32.1% || 76 || 25 || 34.2% || 40 || [ 14 / 26] || 3 || 5 || 21 || 27.6% || 33 || [ 8 / 25] || 10 || 11 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 11. [[Results of Struve and Related Functions|ST]] | ||
| style="border-right: solid 1px #000;" | 124 | |||
|| 48 || 121 | |||
| style="border-right: solid 1px #000;" | 112 | |||
|| 39 || 32.2% | |||
| style="border-right: solid 2px #aaa;" | 73 | |||
|| 36 || 32.1% | |||
| style="border-right: solid 1px #000;" | 76 | |||
|| 25 || 34.2% || 40 || [ 14 / 26] || 3 | |||
| style="border-right: solid 2px #aaa;" | 5 | |||
|| 21 || 27.6% || 33 || [ 8 / 25] || 10 || 11 | |||
|- | |- | ||
| 12. [[Results of Parabolic Cylinder Functions|PC]] || 106 || 33 || 79 || 90 || 25 || 31.6% || 50 || 18 || 20.0% || 72 || 15 || 30.0% || 24 || [ 15 / 9] || 11 || 0 || 13 || 18.0% || 43 || [ 15 / 28] || 12 || 3 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 12. [[Results of Parabolic Cylinder Functions|PC]] | ||
| style="border-right: solid 1px #000;" | 106 | |||
|| 33 || 79 | |||
| style="border-right: solid 1px #000;" | 90 | |||
|| 25 || 31.6% | |||
| style="border-right: solid 2px #aaa;" | 50 | |||
|| 18 || 20.0% | |||
| style="border-right: solid 1px #000;" | 72 | |||
|| 15 || 30.0% || 24 || [ 15 / 9] || 11 | |||
| style="border-right: solid 2px #aaa;" | 0 | |||
|| 13 || 18.0% || 43 || [ 15 / 28] || 12 || 3 | |||
|- | |- | ||
| 13. [[Results of Confluent Hypergeometric Functions|CH]] || 260 || 126 || 252 || 254 || 75 || 29.8% || 143 || 69 || 27.2% || 185 || 14 || 9.8% || 90 || [ 55 / 35] || 37 || 2 || 23 || 12.4% || 95 || [ 59 / 36] || 45 || 21 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 13. [[Results of Confluent Hypergeometric Functions|CH]] | ||
| style="border-right: solid 1px #000;" | 260 | |||
|| 126 || 252 | |||
| style="border-right: solid 1px #000;" | 254 | |||
|| 75 || 29.8% | |||
| style="border-right: solid 2px #aaa;" | 143 | |||
|| 69 || 27.2% | |||
| style="border-right: solid 1px #000;" | 185 | |||
|| 14 || 9.8% || 90 || [ 55 / 35] || 37 | |||
| style="border-right: solid 2px #aaa;" | 2 | |||
|| 23 || 12.4% || 95 || [ 59 / 36] || 45 || 21 | |||
|- | |- | ||
| 14. [[Results of Legendre and Related Functions|LE]] || 238 || 166 || 230 || 229 || 30 || 13.0% || 163 || 30 || 13.1% || 199 || 40 || 24.5% || 93 || [ 57 / 36] || 18 || 12 || 59 || 29.6% || 92 || [ 54 / 38] || 41 || 5 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 14. [[Results of Legendre and Related Functions|LE]] | ||
| style="border-right: solid 1px #000;" | 238 | |||
|| 166 || 230 | |||
| style="border-right: solid 1px #000;" | 229 | |||
|| 30 || 13.0% | |||
| style="border-right: solid 2px #aaa;" | 163 | |||
|| 30 || 13.1% | |||
| style="border-right: solid 1px #000;" | 199 | |||
|| 40 || 24.5% || 93 || [ 57 / 36] || 18 | |||
| style="border-right: solid 2px #aaa;" | 12 | |||
|| 59 || 29.6% || 92 || [ 54 / 38] || 41 || 5 | |||
|- | |- | ||
| 15. [[Results of Hypergeometric Function|HY]] || 206 || 148 || 198 || 197 || 46 || 23.2% || 115 || 53 || 26.9% || 144 || 17 || 14.8% || 52 || [ 34 / 18] || 23 || 23 || 23 || 16.0% || 77 || [ 52 / 25] || 29 || 6 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 15. [[Results of Hypergeometric Function|HY]] | ||
| style="border-right: solid 1px #000;" | 206 | |||
|| 148 || 198 | |||
| style="border-right: solid 1px #000;" | 197 | |||
|| 46 || 23.2% | |||
| style="border-right: solid 2px #aaa;" | 115 | |||
|| 53 || 26.9% | |||
| style="border-right: solid 1px #000;" | 144 | |||
|| 17 || 14.8% || 52 || [ 34 / 18] || 23 | |||
| style="border-right: solid 2px #aaa;" | 23 | |||
|| 23 || 16.0% || 77 || [ 52 / 25] || 29 || 6 | |||
|- | |- | ||
| 16. [[Results of Generalized Hypergeometric Functions and Meijer G-Function|GH]] || 53 || 20 || 23 || 25 || 3 || 13.0% || 16 || 2 || 8.0% || 23 || 1 || 6.2% || 9 || [ 8 / 1] || 6 || 0 || 1 || 4.3% || 10 || [ 7 / 3] || 9 || 2 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 16. [[Results of Generalized Hypergeometric Functions and Meijer G-Function|GH]] | ||
| style="border-right: solid 1px #000;" | 53 | |||
|| 20 || 23 | |||
| style="border-right: solid 1px #000;" | 25 | |||
|| 3 || 13.0% | |||
| style="border-right: solid 2px #aaa;" | 16 | |||
|| 2 || 8.0% | |||
| style="border-right: solid 1px #000;" | 23 | |||
|| 1 || 6.2% || 9 || [ 8 / 1] || 6 | |||
| style="border-right: solid 2px #aaa;" | 0 | |||
|| 1 || 4.3% || 10 || [ 7 / 3] || 9 || 2 | |||
|- | |- | ||
| 17. [[Results of q-Hypergeometric and Related Functions|QH]] || 175 || 1 || 53 || 124 || 23 || 43.4% || 24 || 6 || 4.8% || 118 || 0 || 0.0% || 0 || [ 0 / 0] || 1 || 23 || 13 || 11.0% || 57 || [ 52 / 5] || 39 || 5 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 17. [[Results of q-Hypergeometric and Related Functions|QH]] | ||
| style="border-right: solid 1px #000;" | 175 | |||
|| 1 || 53 | |||
| style="border-right: solid 1px #000;" | 124 | |||
|| 23 || 43.4% | |||
| style="border-right: solid 2px #aaa;" | 24 | |||
|| 6 || 4.8% | |||
| style="border-right: solid 1px #000;" | 118 | |||
|| 0 || 0.0% || 0 || [ 0 / 0] || 1 | |||
| style="border-right: solid 2px #aaa;" | 23 | |||
|| 13 || 11.0% || 57 || [ 52 / 5] || 39 || 5 | |||
|- | |- | ||
| 18. [[Results of Orthogonal Polynomials|OP]] || 468 || 132 || 235 || 288 || 65 || 27.6% || 148 || 101 || 35.1% || 185 || 67 || 45.3% || 50 || [ 32 / 18] || 14 || 17 || 45 || 24.3% || 68 || [ 31 / 37] || 52 || 12 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 18. [[Results of Orthogonal Polynomials|OP]] | ||
| style="border-right: solid 1px #000;" | 468 | |||
|| 132 || 235 | |||
| style="border-right: solid 1px #000;" | 288 | |||
|| 65 || 27.6% | |||
| style="border-right: solid 2px #aaa;" | 148 | |||
|| 101 || 35.1% | |||
| style="border-right: solid 1px #000;" | 185 | |||
|| 67 || 45.3% || 50 || [ 32 / 18] || 14 | |||
| style="border-right: solid 2px #aaa;" | 17 | |||
|| 45 || 24.3% || 68 || [ 31 / 37] || 52 || 12 | |||
|- | |- | ||
| 19. EL [[Results of Elliptic Integrals I|I]] & [[Results of Elliptic Integrals II|II]] || 516 || 103 || 252 || 416 || 39 || 15.5% || 192 || 51 || 12.2% || 365 || 18 || 9.4% || 123 || [ 44 / 79] || 34 || 17 || 18 || 4.9% || 264 || [ 49 / 215] || 61 || 15 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 19. EL [[Results of Elliptic Integrals I|I]] & [[Results of Elliptic Integrals II|II]] | ||
| style="border-right: solid 1px #000;" | 516 | |||
|| 103 || 252 | |||
| style="border-right: solid 1px #000;" | 416 | |||
|| 39 || 15.5% | |||
| style="border-right: solid 2px #aaa;" | 192 | |||
|| 51 || 12.2% | |||
| style="border-right: solid 1px #000;" | 365 | |||
|| 18 || 9.4% || 123 || [ 44 / 79] || 34 | |||
| style="border-right: solid 2px #aaa;" | 17 | |||
|| 18 || 4.9% || 264 || [ 49 / 215] || 61 || 15 | |||
|- | |- | ||
| 20. [[Results of Theta Functions|TH]] || 128 || 52 || 98 || 98 || 10 || 10.2% || 68 || 1 || 1.0% || 97 || 0 || 0.0% || 32 || [ 17 / 15] || 20 || 16 || 33 || 34.0% || 40 || [ 25 / 15] || 24 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 20. [[Results of Theta Functions|TH]] | ||
| style="border-right: solid 1px #000;" | 128 | |||
|| 52 || 98 | |||
| style="border-right: solid 1px #000;" | 98 | |||
|| 10 || 10.2% | |||
| style="border-right: solid 2px #aaa;" | 68 | |||
|| 1 || 1.0% | |||
| style="border-right: solid 1px #000;" | 97 | |||
|| 0 || 0.0% || 32 || [ 17 / 15] || 20 | |||
| style="border-right: solid 2px #aaa;" | 16 | |||
|| 33 || 34.0% || 40 || [ 25 / 15] || 24 || 0 | |||
|- | |- | ||
| 21. [[Results of Multidimensional Theta Functions|MT]] || | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 21. [[Results of Multidimensional Theta Functions|MT]] | ||
|style="border-right: solid 1px #000;" | - | |||
|| - || - | |||
| style="border-right: solid 1px #000;" | - | |||
|| - || - | |||
| style="border-right: solid 2px #aaa;" | - | |||
|| - || - | |||
| style="border-right: solid 1px #000;" | - | |||
|| - || - || - || - || - | |||
| style="border-right: solid 2px #aaa;" | - | |||
|| - || - || - || - || - || - | |||
|- | |- | ||
| 22. [[Results of Jacobian Elliptic Functions|JA]] || 264 || 115 || 232 || 238 || 46 || 19.8% || 176 || 30 || 12.6% || 206 || 20 || 11.4% || 116 || [ 25 / 91] || 36 || 4 || 22 || 10.7% || 131 || [ 39 / 92] || 51 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 22. [[Results of Jacobian Elliptic Functions|JA]] | ||
| style="border-right: solid 1px #000;" | 264 | |||
|| 115 || 232 | |||
| style="border-right: solid 1px #000;" | 238 | |||
|| 46 || 19.8% | |||
| style="border-right: solid 2px #aaa;" | 176 | |||
|| 30 || 12.6% | |||
| style="border-right: solid 1px #000;" | 206 | |||
|| 20 || 11.4% || 116 || [ 25 / 91] || 36 | |||
| style="border-right: solid 2px #aaa;" | 4 | |||
|| 22 || 10.7% || 131 || [ 39 / 92] || 51 || 0 | |||
|- | |- | ||
| 23. [[Results of Weierstrass Elliptic and Modular Functions|WE]] || 164 || 7 || 19 || 34 || 1 || 5.3% || 16 || 4 || 11.8% || 30 || 0 || 0.0% || 14 || [ 2 / 12] || 1 || 1 || 2 || 6.7% || 23 || [ 9 / 14] || 2 || 3 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 23. [[Results of Weierstrass Elliptic and Modular Functions|WE]] | ||
| style="border-right: solid 1px #000;" | 164 | |||
|| 7 || 19 | |||
| style="border-right: solid 1px #000;" | 34 | |||
|| 1 || 5.3% | |||
| style="border-right: solid 2px #aaa;" | 16 | |||
|| 4 || 11.8% | |||
| style="border-right: solid 1px #000;" | 30 | |||
|| 0 || 0.0% || 14 || [ 2 / 12] || 1 | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 2 || 6.7% || 23 || [ 9 / 14] || 2 || 3 | |||
|- | |- | ||
| 24. [[Results of Bernoulli and Euler Polynomials|BP]] || 175 || 31 || 117 || 148 || 15 || 12.8% || 101 || 23 || 15.5% || 125 || 67 || 66.3% || 32 || [ 19 / 13] || 1 || 1 || 78 || 62.4% || 33 || [ 22 / 11] || 14 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 24. [[Results of Bernoulli and Euler Polynomials|BP]] | ||
| style="border-right: solid 1px #000;" | 175 | |||
|| 31 || 117 | |||
| style="border-right: solid 1px #000;" | 148 | |||
|| 15 || 12.8% | |||
| style="border-right: solid 2px #aaa;" | 101 | |||
|| 23 || 15.5% | |||
| style="border-right: solid 1px #000;" | 125 | |||
|| 67 || 66.3% || 32 || [ 19 / 13] || 1 | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 78 || 62.4% || 33 || [ 22 / 11] || 14 || 0 | |||
|- | |- | ||
| 25. [[Results of Zeta and Related Functions|ZE]] || 154 || 28 || 124 || 120 || 19 || 15.3% || 90 || 48 || 40.0% || 72 || 43 || 47.8% || 29 || [ 18 / 11] || 10 || 8 || 22 || 30.5% || 22 || [ 6 / 16] || 22 || 3 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 25. [[Results of Zeta and Related Functions|ZE]] | ||
| style="border-right: solid 1px #000;" | 154 | |||
|| 28 || 124 | |||
| style="border-right: solid 1px #000;" | 120 | |||
|| 19 || 15.3% | |||
| style="border-right: solid 2px #aaa;" | 90 | |||
|| 48 || 40.0% | |||
| style="border-right: solid 1px #000;" | 72 | |||
|| 43 || 47.8% || 29 || [ 18 / 11] || 10 | |||
| style="border-right: solid 2px #aaa;" | 8 | |||
|| 22 || 30.5% || 22 || [ 6 / 16] || 22 || 3 | |||
|- | |- | ||
| 26. [[Results of Combinatorial Analysis|CM]] || 136 || 31 || 78 || 87 || 20 || 25.6% || 50 || 19 || 21.8% || 68 || 30 || 60.0% || 11 || [ 8 / 3] || 2 || 7 || 44 || 64.7% || 18 || [ 10 / 8] || 5 || 1 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 26. [[Results of Combinatorial Analysis|CM]] | ||
| style="border-right: solid 1px #000;" | 136 | |||
|| 31 || 78 | |||
| style="border-right: solid 1px #000;" | 87 | |||
|| 20 || 25.6% | |||
| style="border-right: solid 2px #aaa;" | 50 | |||
|| 19 || 21.8% | |||
| style="border-right: solid 1px #000;" | 68 | |||
|| 30 || 60.0% || 11 || [ 8 / 3] || 2 | |||
| style="border-right: solid 2px #aaa;" | 7 | |||
|| 44 || 64.7% || 18 || [ 10 / 8] || 5 || 1 | |||
|- | |- | ||
| 27. [[Results of Functions of Number Theory|NT]] || 79 || 5 || 26 || 15 || 3 || 11.5% || 17 || 6 || 40.0% || 9 || 2 || 11.8% || 6 || [ 3 / 3] || 0 || 8 || 3 || 33.3% || 6 || [ 3 / 3] || 0 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 27. [[Results of Functions of Number Theory|NT]] | ||
| style="border-right: solid 1px #000;" | 79 | |||
|| 5 || 26 | |||
| style="border-right: solid 1px #000;" | 15 | |||
|| 3 || 11.5% | |||
| style="border-right: solid 2px #aaa;" | 17 | |||
|| 6 || 40.0% | |||
| style="border-right: solid 1px #000;" | 9 | |||
|| 2 || 11.8% || 6 || [ 3 / 3] || 0 | |||
| style="border-right: solid 2px #aaa;" | 8 | |||
|| 3 || 33.3% || 6 || [ 3 / 3] || 0 || 0 | |||
|- | |- | ||
| 28. [[Results of Mathieu Functions and Hill’s Equation|MA]] || 267 || 52 || 97 || 110 || 7 || 7.2% || 80 || 7 || 6.4% || 103 || 6 || 7.5% || 32 || [ 12 / 20] || 26 || 15 || 3 || 2.9% || 48 || [ 13 / 35] || 33 || 17 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 28. [[Results of Mathieu Functions and Hill’s Equation|MA]] | ||
| style="border-right: solid 1px #000;" | 267 | |||
|| 52 || 97 | |||
| style="border-right: solid 1px #000;" | 110 | |||
|| 7 || 7.2% | |||
| style="border-right: solid 2px #aaa;" | 80 | |||
|| 7 || 6.4% | |||
| style="border-right: solid 1px #000;" | 103 | |||
|| 6 || 7.5% || 32 || [ 12 / 20] || 26 | |||
| style="border-right: solid 2px #aaa;" | 15 | |||
|| 3 || 2.9% || 48 || [ 13 / 35] || 33 || 17 | |||
|- | |- | ||
| 29. [[Results of Lamé Functions|LA]] || 111 || 11 || 23 || 22 || 0 || 0.0% || 21 || 0 || 0.0% || 22 || 0 || 0.0% || 19 || [ 2 / 17] || 0 || 2 || 0 || 0.0% || 21 || [ 1 / 20] || 0 || 1 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 29. [[Results of Lamé Functions|LA]] | ||
| style="border-right: solid 1px #000;" | 111 | |||
|| 11 || 23 | |||
| style="border-right: solid 1px #000;" | 22 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 2px #aaa;" | 21 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 1px #000;" | 22 | |||
|| 0 || 0.0% || 19 || [ 2 / 17] || 0 | |||
| style="border-right: solid 2px #aaa;" | 2 | |||
|| 0 || 0.0% || 21 || [ 1 / 20] || 0 || 1 | |||
|- | |- | ||
| 30. [[Results of Spheroidal Wave Functions|SW]] || 71 || 14 || 19 || 26 || 0 || 0.0% || 18 || 0 || 0.0% || 26 || 0 || 0.0% || 18 || [ 5 / 13] || 0 || 0 || 0 || 0.0% || 19 || [ 2 / 17] || 5 || 1 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 30. [[Results of Spheroidal Wave Functions|SW]] | ||
| style="border-right: solid 1px #000;" | 71 | |||
|| 14 || 19 | |||
| style="border-right: solid 1px #000;" | 26 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 2px #aaa;" | 18 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 1px #000;" | 26 | |||
|| 0 || 0.0% || 18 || [ 5 / 13] || 0 | |||
| style="border-right: solid 2px #aaa;" | 0 | |||
|| 0 || 0.0% || 19 || [ 2 / 17] || 5 || 1 | |||
|- | |- | ||
| 31. [[Results of Heun Functions|HE]] || 35 || 29 || 22 || 15 || 5 || 22.7% || 13 || 2 || 13.3% || 13 || 2 || 15.4% || 10 || [ 0 / 10] || 0 || 1 || 0 || 0.0% || 8 || [ 0 / 8] || 5 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 31. [[Results of Heun Functions|HE]] | ||
| style="border-right: solid 1px #000;" | 35 | |||
|| 29 || 22 | |||
| style="border-right: solid 1px #000;" | 15 | |||
|| 5 || 22.7% | |||
| style="border-right: solid 2px #aaa;" | 13 | |||
|| 2 || 13.3% | |||
| style="border-right: solid 1px #000;" | 13 | |||
|| 2 || 15.4% || 10 || [ 0 / 10] || 0 | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 0 || 0.0% || 8 || [ 0 / 8] || 5 || 0 | |||
|- | |- | ||
| 32. [[Results of Painlevé Transcendents|PT]] || 67 || 43 || 57 || 57 || 3 || 5.3% || 51 || 3 || 5.3% || 54 || 1 || 2.0% || 44 || [ 7 / 37] || 4 || 2 || 0 || 0.0% || 41 || [ 2 / 39] || 8 || 5 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 32. [[Results of Painlevé Transcendents|PT]] | ||
| style="border-right: solid 1px #000;" | 67 | |||
|| 43 || 57 | |||
| style="border-right: solid 1px #000;" | 57 | |||
|| 3 || 5.3% | |||
| style="border-right: solid 2px #aaa;" | 51 | |||
|| 3 || 5.3% | |||
| style="border-right: solid 1px #000;" | 54 | |||
|| 1 || 2.0% || 44 || [ 7 / 37] || 4 | |||
| style="border-right: solid 2px #aaa;" | 2 | |||
|| 0 || 0.0% || 41 || [ 2 / 39] || 8 || 5 | |||
|- | |- | ||
| 33. [[Results of Coulomb Functions|CW]] || 108 || 21 || 14 || 11 || 1 || 7.1% || 13 || 0 || 0.0% || 11 || 0 || 0.0% || 5 || [ 2 / 3] || 0 || 8 || 0 || 0.0% || 11 || [ 2 / 9] || 0 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 33. [[Results of Coulomb Functions|CW]] | ||
| style="border-right: solid 1px #000;" | 108 | |||
|| 21 || 14 | |||
| style="border-right: solid 1px #000;" | 11 | |||
|| 1 || 7.1% | |||
| style="border-right: solid 2px #aaa;" | 13 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 1px #000;" | 11 | |||
|| 0 || 0.0% || 5 || [ 2 / 3] || 0 | |||
| style="border-right: solid 2px #aaa;" | 8 | |||
|| 0 || 0.0% || 11 || [ 2 / 9] || 0 || 0 | |||
|- | |- | ||
| 34. [[Results of 3j,6j,9j Symbols|TJ]] || 57 || 0 || 1 || 37 || 0 || 0.0% || 1 || 0 || 0.0% || 37 || 0 || 0.0% || 1 || [ 0 / 1] || 0 || 0 || 14 || 37.8% || 10 || [ 5 / 5] || 13 || 0 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 34. [[Results of 3j,6j,9j Symbols|TJ]] | ||
| style="border-right: solid 1px #000;" | 57 | |||
|| 0 || 1 | |||
| style="border-right: solid 1px #000;" | 37 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 1px #000;" | 37 | |||
|| 0 || 0.0% || 1 || [ 0 / 1] || 0 | |||
| style="border-right: solid 2px #aaa;" | 0 | |||
|| 14 || 37.8% || 10 || [ 5 / 5] || 13 || 0 | |||
|- | |- | ||
| 35. [[Results of Functions of Matrix Argument|FM]] || | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 35. [[Results of Functions of Matrix Argument|FM]] | ||
|style="border-right: solid 1px #000;" | - | |||
|| - || - | |||
| style="border-right: solid 1px #000;" | - | |||
|| - || - | |||
| style="border-right: solid 2px #aaa;" | - | |||
|| - || - | |||
| style="border-right: solid 1px #000;" | - | |||
|| - || - || - || - || - | |||
| style="border-right: solid 2px #aaa;" | - | |||
|| - || - || - || - || - || - | |||
|- | |- | ||
| 36. [[Results of Integrals with Coalescing Saddles|IC]] || 106 || 12 || 24 || 24 || 0 || 0.0% || 19 || 0 || 0.0% || 24 || 3 || 15.8% || 12 || [ 1 / 11] || 3 || 1 || 3 || 12.5% || 13 || [ 1 / 12] || 1 || 6 | ! scope="row" style="text-align: left; border-right: solid 1px #000"| 36. [[Results of Integrals with Coalescing Saddles|IC]] | ||
| style="border-right: solid 1px #000;" | 106 | |||
|| 12 || 24 | |||
| style="border-right: solid 1px #000;" | 24 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 2px #aaa;" | 19 | |||
|| 0 || 0.0% | |||
| style="border-right: solid 1px #000;" | 24 | |||
|| 3 || 15.8% || 12 || [ 1 / 11] || 3 | |||
| style="border-right: solid 2px #aaa;" | 1 | |||
|| 3 || 12.5% || 13 || [ 1 / 12] || 1 || 6 | |||
|- | |||
! <math>\sum</math> || 6545 || 2067 || 4114 || 4713 || 1084 || 26.3% || 2618 || 1235 || 26.2% || 3474 || 698 || 26.7% || 1357 || [607 / 750] || 329 || 226 || 784 || 22.6% || 1784 || [687 / 1097] || 655 || 180 | |||
|- | |- | ||
|} | |} |
Revision as of 15:31, 4 February 2021
This page presents the results of the publication: Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems.
Bug Reports
You can find a PDF with commands that illustrate the encountered errors in Mathematica here: File:Mathematica Bugs Overview.pdf
We provide the same file in the Wolfram system notebook format (NB) here: File:Mathematica Bugs Notebook File.nb
DLMF Translations and Results
In the following, we present the translations of the DLMF equations to the CAS Maple and Mathematica.
DLMF | Formula | Translations Maple |
Translations Mathematica |
Symbolic Evaluation Maple |
Symbolic Evaluation Mathematica |
Numeric Evaluation Maple |
Numeric Evaluation Mathematica |
---|---|---|---|---|---|---|---|
DLMF | 6,623 | 4,114 (62.1%) | 4,713 (71.2%) | 1,084 (26.3%) | 1,235 (26.2%) | 698 (26.7%) | 784 (22.6%) |
By clicking on a chapter of the DLMF below, you will see a large table that looks like this:
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
Link to DLMF | Formula | Translation to Maple |
Translation to Mathematica |
Symbolic Result of Maple | Symbolic Result of Mathematica | Numeric Result of Maple | Numeric Result of Mathematica |
The result tables do not contain every equation with a label in the DLMF since quite a few equations were skipped (see explanations in the paper).
Translations and Evaluations of the Digital Library of Mathematical Functions
- Algebraic and Analytic Methods
- Asymptotic Approximations
- Numerical Methods
- Elementary Functions
- Gamma Function
- Exponential, Logarithmic, Sine, and Cosine Integrals
- Error Functions, Dawson’s and Fresnel Integrals
- Incomplete Gamma and Related Functions
- Airy and Related Functions
- Bessel Functions I & Bessel Functions II
- Struve and Related Functions
- Parabolic Cylinder Functions
- Confluent Hypergeometric Functions
- Legendre and Related Functions
- Hypergeometric Function
- Generalized Hypergeometric Functions and Meijer G-Function
- q-Hypergeometric and Related Functions
- Orthogonal Polynomials
- Elliptic Integrals I & Elliptic Integrals II
- Theta Functions
- Multidimensional Theta Functions
- Jacobian Elliptic Functions
- Weierstrass Elliptic and Modular Functions
- Bernoulli and Euler Polynomials
- Zeta and Related Functions
- Combinatorial Analysis
- Functions of Number Theory
- Mathieu Functions and Hill’s Equation
- Lamé Functions
- Spheroidal Wave Functions
- Heun Functions
- Painlevé Transcendents
- Coulomb Functions
- 3j,6j,9j Symbols
- Functions of Matrix Argument
- Integrals with Coalescing Saddles
Translations and Evaluations Overview Table
Meaning | |
---|---|
2C | Chapter Code |
S | Successful |
% | Percentage |
F | Fail |
P/T | Partially / Totally Failed |
A | Aborted |
E | Errors |
Base | The baseline performance of the translator |
Maple | The CAS Maple 2020 |
Mathematica | The CAS Mathematica |
Symbolic | Numeric | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Formulae | Translations | Maple | Mathematica | Maple | Mathematica | |||||||||||||||||
2C | Total | Base | Maple | Math | S | % | F | S | % | F | S | % | F | [P/T] | A | E | S | % | F | [P/T] | A | E |
1. AL | 227 | 60 | 102 | 103 | 36 | 35.3% | 60 | 34 | 33.0% | 69 | 14 | 23.3% | 35 | [ 12 / 23] | 7 | 4 | 14 | 20.3% | 40 | [ 9 / 31] | 11 | 4 |
2. AS | 136 | 33 | 65 | 65 | 6 | 9.2% | 47 | 6 | 9.2% | 59 | 7 | 14.9% | 33 | [ 5 / 28] | 1 | 5 | 4 | 6.8% | 38 | [ 6 / 32] | 7 | 9 |
3. NM | 53 | 36 | 40 | 40 | 6 | 15.0% | 31 | 5 | 12.5% | 35 | 1 | 3.2% | 27 | [ 9 / 18] | 0 | 2 | 0 | 0.0% | 29 | [ 8 / 21] | 6 | 0 |
4. EF | 569 | 353 | 494 | 564 | 270 | 54.7% | 221 | 304 | 53.9% | 260 | 88 | 39.8% | 126 | [ 64 / 62] | 0 | 6 | 110 | 42.3% | 146 | [ 55 / 91] | 2 | 0 |
5. GA | 144 | 38 | 130 | 139 | 41 | 31.5% | 76 | 65 | 46.8% | 74 | 39 | 51.3% | 25 | [ 12 / 13] | 4 | 8 | 30 | 40.5% | 20 | [ 9 / 11] | 13 | 9 |
6. EX | 107 | 21 | 56 | 77 | 13 | 23.2% | 43 | 18 | 23.4% | 59 | 10 | 23.2% | 31 | [ 13 / 18] | 0 | 2 | 23 | 39.0% | 32 | [ 6 / 26] | 4 | 0 |
7. ER | 149 | 35 | 101 | 120 | 52 | 51.5% | 47 | 45 | 37.5% | 75 | 21 | 44.7% | 23 | [ 10 / 13] | 2 | 1 | 21 | 28.0% | 43 | [ 13 / 30] | 9 | 1 |
8. IG | 204 | 84 | 160 | 163 | 51 | 31.9% | 102 | 65 | 39.9% | 98 | 27 | 26.5% | 61 | [ 20 / 41] | 9 | 5 | 22 | 22.4% | 44 | [ 19 / 25] | 16 | 15 |
9. AI | 235 | 36 | 180 | 179 | 54 | 30.0% | 124 | 69 | 38.5% | 110 | 34 | 27.4% | 75 | [ 41 / 34] | 4 | 8 | 30 | 27.3% | 58 | [ 38 / 20] | 14 | 7 |
10. BS I & II | 653 | 143 | 392 | 486 | 80 | 20.4% | 209 | 115 | 23.7% | 371 | 86 | 41.1% | 59 | [ 41 / 18] | 52 | 12 | 90 | 24.2% | 151 | [ 57 / 94] | 92 | 18 |
11. ST | 124 | 48 | 121 | 112 | 39 | 32.2% | 73 | 36 | 32.1% | 76 | 25 | 34.2% | 40 | [ 14 / 26] | 3 | 5 | 21 | 27.6% | 33 | [ 8 / 25] | 10 | 11 |
12. PC | 106 | 33 | 79 | 90 | 25 | 31.6% | 50 | 18 | 20.0% | 72 | 15 | 30.0% | 24 | [ 15 / 9] | 11 | 0 | 13 | 18.0% | 43 | [ 15 / 28] | 12 | 3 |
13. CH | 260 | 126 | 252 | 254 | 75 | 29.8% | 143 | 69 | 27.2% | 185 | 14 | 9.8% | 90 | [ 55 / 35] | 37 | 2 | 23 | 12.4% | 95 | [ 59 / 36] | 45 | 21 |
14. LE | 238 | 166 | 230 | 229 | 30 | 13.0% | 163 | 30 | 13.1% | 199 | 40 | 24.5% | 93 | [ 57 / 36] | 18 | 12 | 59 | 29.6% | 92 | [ 54 / 38] | 41 | 5 |
15. HY | 206 | 148 | 198 | 197 | 46 | 23.2% | 115 | 53 | 26.9% | 144 | 17 | 14.8% | 52 | [ 34 / 18] | 23 | 23 | 23 | 16.0% | 77 | [ 52 / 25] | 29 | 6 |
16. GH | 53 | 20 | 23 | 25 | 3 | 13.0% | 16 | 2 | 8.0% | 23 | 1 | 6.2% | 9 | [ 8 / 1] | 6 | 0 | 1 | 4.3% | 10 | [ 7 / 3] | 9 | 2 |
17. QH | 175 | 1 | 53 | 124 | 23 | 43.4% | 24 | 6 | 4.8% | 118 | 0 | 0.0% | 0 | [ 0 / 0] | 1 | 23 | 13 | 11.0% | 57 | [ 52 / 5] | 39 | 5 |
18. OP | 468 | 132 | 235 | 288 | 65 | 27.6% | 148 | 101 | 35.1% | 185 | 67 | 45.3% | 50 | [ 32 / 18] | 14 | 17 | 45 | 24.3% | 68 | [ 31 / 37] | 52 | 12 |
19. EL I & II | 516 | 103 | 252 | 416 | 39 | 15.5% | 192 | 51 | 12.2% | 365 | 18 | 9.4% | 123 | [ 44 / 79] | 34 | 17 | 18 | 4.9% | 264 | [ 49 / 215] | 61 | 15 |
20. TH | 128 | 52 | 98 | 98 | 10 | 10.2% | 68 | 1 | 1.0% | 97 | 0 | 0.0% | 32 | [ 17 / 15] | 20 | 16 | 33 | 34.0% | 40 | [ 25 / 15] | 24 | 0 |
21. MT | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22. JA | 264 | 115 | 232 | 238 | 46 | 19.8% | 176 | 30 | 12.6% | 206 | 20 | 11.4% | 116 | [ 25 / 91] | 36 | 4 | 22 | 10.7% | 131 | [ 39 / 92] | 51 | 0 |
23. WE | 164 | 7 | 19 | 34 | 1 | 5.3% | 16 | 4 | 11.8% | 30 | 0 | 0.0% | 14 | [ 2 / 12] | 1 | 1 | 2 | 6.7% | 23 | [ 9 / 14] | 2 | 3 |
24. BP | 175 | 31 | 117 | 148 | 15 | 12.8% | 101 | 23 | 15.5% | 125 | 67 | 66.3% | 32 | [ 19 / 13] | 1 | 1 | 78 | 62.4% | 33 | [ 22 / 11] | 14 | 0 |
25. ZE | 154 | 28 | 124 | 120 | 19 | 15.3% | 90 | 48 | 40.0% | 72 | 43 | 47.8% | 29 | [ 18 / 11] | 10 | 8 | 22 | 30.5% | 22 | [ 6 / 16] | 22 | 3 |
26. CM | 136 | 31 | 78 | 87 | 20 | 25.6% | 50 | 19 | 21.8% | 68 | 30 | 60.0% | 11 | [ 8 / 3] | 2 | 7 | 44 | 64.7% | 18 | [ 10 / 8] | 5 | 1 |
27. NT | 79 | 5 | 26 | 15 | 3 | 11.5% | 17 | 6 | 40.0% | 9 | 2 | 11.8% | 6 | [ 3 / 3] | 0 | 8 | 3 | 33.3% | 6 | [ 3 / 3] | 0 | 0 |
28. MA | 267 | 52 | 97 | 110 | 7 | 7.2% | 80 | 7 | 6.4% | 103 | 6 | 7.5% | 32 | [ 12 / 20] | 26 | 15 | 3 | 2.9% | 48 | [ 13 / 35] | 33 | 17 |
29. LA | 111 | 11 | 23 | 22 | 0 | 0.0% | 21 | 0 | 0.0% | 22 | 0 | 0.0% | 19 | [ 2 / 17] | 0 | 2 | 0 | 0.0% | 21 | [ 1 / 20] | 0 | 1 |
30. SW | 71 | 14 | 19 | 26 | 0 | 0.0% | 18 | 0 | 0.0% | 26 | 0 | 0.0% | 18 | [ 5 / 13] | 0 | 0 | 0 | 0.0% | 19 | [ 2 / 17] | 5 | 1 |
31. HE | 35 | 29 | 22 | 15 | 5 | 22.7% | 13 | 2 | 13.3% | 13 | 2 | 15.4% | 10 | [ 0 / 10] | 0 | 1 | 0 | 0.0% | 8 | [ 0 / 8] | 5 | 0 |
32. PT | 67 | 43 | 57 | 57 | 3 | 5.3% | 51 | 3 | 5.3% | 54 | 1 | 2.0% | 44 | [ 7 / 37] | 4 | 2 | 0 | 0.0% | 41 | [ 2 / 39] | 8 | 5 |
33. CW | 108 | 21 | 14 | 11 | 1 | 7.1% | 13 | 0 | 0.0% | 11 | 0 | 0.0% | 5 | [ 2 / 3] | 0 | 8 | 0 | 0.0% | 11 | [ 2 / 9] | 0 | 0 |
34. TJ | 57 | 0 | 1 | 37 | 0 | 0.0% | 1 | 0 | 0.0% | 37 | 0 | 0.0% | 1 | [ 0 / 1] | 0 | 0 | 14 | 37.8% | 10 | [ 5 / 5] | 13 | 0 |
35. FM | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
36. IC | 106 | 12 | 24 | 24 | 0 | 0.0% | 19 | 0 | 0.0% | 24 | 3 | 15.8% | 12 | [ 1 / 11] | 3 | 1 | 3 | 12.5% | 13 | [ 1 / 12] | 1 | 6 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum} | 6545 | 2067 | 4114 | 4713 | 1084 | 26.3% | 2618 | 1235 | 26.2% | 3474 | 698 | 26.7% | 1357 | [607 / 750] | 329 | 226 | 784 | 22.6% | 1784 | [687 / 1097] | 655 | 180 |