DLMF:15.6.E6 (Q5044)

From testwiki
Revision as of 12:58, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:15.6.E6
No description defined

    Statements

    𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) - i i Γ ( a + t ) Γ ( b + t ) Γ ( - t ) Γ ( c + t ) ( - z ) t d t , scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑧 1 2 𝜋 imaginary-unit Euler-Gamma 𝑎 Euler-Gamma 𝑏 superscript subscript imaginary-unit imaginary-unit Euler-Gamma 𝑎 𝑡 Euler-Gamma 𝑏 𝑡 Euler-Gamma 𝑡 Euler-Gamma 𝑐 𝑡 superscript 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{1}{2\pi% \mathrm{i}\Gamma\left(a\right)\Gamma\left(b\right)}\int_{-\mathrm{i}\infty}^{% \mathrm{i}\infty}\frac{\Gamma\left(a+t\right)\Gamma\left(b+t\right)\Gamma\left% (-t\right)}{\Gamma\left(c+t\right)}(-z)^{t}\mathrm{d}t,}}
    0 references
    0 references
    | ph ( - z ) | < π phase 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi}}
    0 references
    | ph ( - z ) | < π ph 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi}}
    0 references
    a , b 0 , - 1 , - 2 , formulae-sequence 𝑎 𝑏 0 1 2 {\displaystyle{\displaystyle a,b\neq 0,-1,-2,\dots}}
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2aedec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2aedec
    0 references