DLMF:15.8.E28 (Q5085)

From testwiki
Revision as of 16:56, 30 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:15.8.E28
No description defined

    Statements

    2 z Γ ( - 1 2 ) Γ ( a + b - 1 2 ) Γ ( a - 1 2 ) Γ ( b - 1 2 ) F ( a , b ; 3 2 ; z ) = F ( 2 a - 1 , 2 b - 1 ; a + b - 1 2 ; 1 2 - 1 2 z ) - F ( 2 a - 1 , 2 b - 1 ; a + b - 1 2 ; 1 2 + 1 2 z ) , 2 𝑧 Euler-Gamma 1 2 Euler-Gamma 𝑎 𝑏 1 2 Euler-Gamma 𝑎 1 2 Euler-Gamma 𝑏 1 2 Gauss-hypergeometric-F 𝑎 𝑏 3 2 𝑧 Gauss-hypergeometric-F 2 𝑎 1 2 𝑏 1 𝑎 𝑏 1 2 1 2 1 2 𝑧 Gauss-hypergeometric-F 2 𝑎 1 2 𝑏 1 𝑎 𝑏 1 2 1 2 1 2 𝑧 {\displaystyle{\displaystyle\frac{2\sqrt{z}\Gamma\left(-\tfrac{1}{2}\right)% \Gamma\left(a+b-\tfrac{1}{2}\right)}{\Gamma\left(a-\tfrac{1}{2}\right)\Gamma% \left(b-\tfrac{1}{2}\right)}F\left(a,b;\tfrac{3}{2};z\right)=F\left(2a-1,2b-1;% a+b-\tfrac{1}{2};\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}\right)-F\left(2a-1,2b-1;a+b% -\tfrac{1}{2};\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}\right),}}
    0 references
    0 references
    | ph z | < π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi}}
    0 references
    | ph ( 1 - z ) | < π phase 1 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references