Results of Bessel Functions I

From testwiki
Jump to navigation Jump to search

This is the first half of the chapter Bessel Functions. It from Section 10.2 to 10.32. For Section 10.33 to 10.73 go to Bessel Functions II.

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}+(z^{2}-\nu^{2})w = 0} (z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)+((z)^(2)- (nu)^(2))* w = 0 (z)^(2)* D[w, {z, 2}]+ z*D[w, z]+((z)^(2)- \[Nu]^(2))* w == 0 Failure Failure
Failed [217 / 300]
217/300]: [[-.8660254040e-9-2.000000001*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
-.8660254040e-9-2.000000001*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
Failed [240 / 300]
{Complex[1.1102230246251565*^-16, 2.0] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.1102230246251565*^-16, 2.0] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
10.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}} BesselJ(nu, z) = ((1)/(2)*z)^(nu)* sum((- 1)^(k)*(((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity) BesselJ[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[(- 1)^(k)*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 70]
10.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = \frac{\BesselJ{\nu}@{z}\cos@{\nu\pi}-\BesselJ{-\nu}@{z}}{\sin@{\nu\pi}}} BesselY(nu, z) = (BesselJ(nu, z)*cos(nu*Pi)- BesselJ(- nu, z))/(sin(nu*Pi)) BesselY[\[Nu], z] == Divide[BesselJ[\[Nu], z]*Cos[\[Nu]*Pi]- BesselJ[- \[Nu], z],Sin[\[Nu]*Pi]] Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.4#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}} BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z) BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}} BesselY(- n, z) = (- 1)^(n)* BesselY(n, z) BesselY[- n, z] == (- 1)^(n)* BesselY[n, z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}} HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z) HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}} HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z) HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}} HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z) HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z] Successful Successful - Successful [Tested: 70]
10.4#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}} HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z) HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z] Successful Successful - Successful [Tested: 70]
10.4#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)} BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z)) BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z]) Successful Successful - Successful [Tested: 70]
10.4#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)} BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z)) BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z]) Successful Successful - Successful [Tested: 70]
10.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)} BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi)) BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi]) Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.4#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}} HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z) HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z] Successful Failure - Successful [Tested: 70]
10.4#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}} HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z) HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z] Successful Failure - Successful [Tested: 70]
10.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)} HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)} I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z)) I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z]) Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)} HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)} I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z)) I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z]) Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJ{\nu}@{z},\BesselJ{-\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z}} (BesselJ(nu, z))*diff(BesselJ(- nu, z), z)-diff(BesselJ(nu, z), z)*(BesselJ(- nu, z)) = BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) Wronskian[{BesselJ[\[Nu], z], BesselJ[- \[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu+1}@{z}\BesselJ{-\nu}@{z}+\BesselJ{\nu}@{z}\BesselJ{-\nu-1}@{z} = -2\sin@{\nu\pi}/(\pi z)} BesselJ(nu + 1, z)*BesselJ(- nu, z)+ BesselJ(nu, z)*BesselJ(- nu - 1, z) = - 2*sin(nu*Pi)/(Pi*z) BesselJ[\[Nu]+ 1, z]*BesselJ[- \[Nu], z]+ BesselJ[\[Nu], z]*BesselJ[- \[Nu]- 1, z] == - 2*Sin[\[Nu]*Pi]/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJ{\nu}@{z},\BesselY{\nu}@{z}} = \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z}} (BesselJ(nu, z))*diff(BesselY(nu, z), z)-diff(BesselJ(nu, z), z)*(BesselY(nu, z)) = BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) Wronskian[{BesselJ[\[Nu], z], BesselY[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu+1}@{z}\BesselY{\nu}@{z}-\BesselJ{\nu}@{z}\BesselY{\nu+1}@{z} = 2/(\pi z)} BesselJ(nu + 1, z)*BesselY(nu, z)- BesselJ(nu, z)*BesselY(nu + 1, z) = 2/(Pi*z) BesselJ[\[Nu]+ 1, z]*BesselY[\[Nu], z]- BesselJ[\[Nu], z]*BesselY[\[Nu]+ 1, z] == 2/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJ{\nu}@{z},\HankelH{1}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z}} (BesselJ(nu, z))*diff(HankelH1(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH1(nu, z)) = BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) Wronskian[{BesselJ[\[Nu], z], HankelH1[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu+1}@{z}\HankelH{1}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{1}{\nu+1}@{z} = 2i/(\pi z)} BesselJ(nu + 1, z)*HankelH1(nu, z)- BesselJ(nu, z)*HankelH1(nu + 1, z) = 2*I/(Pi*z) BesselJ[\[Nu]+ 1, z]*HankelH1[\[Nu], z]- BesselJ[\[Nu], z]*HankelH1[\[Nu]+ 1, z] == 2*I/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJ{\nu}@{z},\HankelH{2}{\nu}@{z}} = \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z}} (BesselJ(nu, z))*diff(HankelH2(nu, z), z)-diff(BesselJ(nu, z), z)*(HankelH2(nu, z)) = BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) Wronskian[{BesselJ[\[Nu], z], HankelH2[\[Nu], z]}, z] == BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\BesselJ{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -2i/(\pi z)} BesselJ(nu + 1, z)*HankelH2(nu, z)- BesselJ(nu, z)*HankelH2(nu + 1, z) = - 2*I/(Pi*z) BesselJ[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- BesselJ[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 2*I/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\HankelH{1}{\nu}@{z},\HankelH{2}{\nu}@{z}} = \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z}} (HankelH1(nu, z))*diff(HankelH2(nu, z), z)-diff(HankelH1(nu, z), z)*(HankelH2(nu, z)) = HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) Wronskian[{HankelH1[\[Nu], z], HankelH2[\[Nu], z]}, z] == HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu+1}@{z}\HankelH{2}{\nu}@{z}-\HankelH{1}{\nu}@{z}\HankelH{2}{\nu+1}@{z} = -4i/(\pi z)} HankelH1(nu + 1, z)*HankelH2(nu, z)- HankelH1(nu, z)*HankelH2(nu + 1, z) = - 4*I/(Pi*z) HankelH1[\[Nu]+ 1, z]*HankelH2[\[Nu], z]- HankelH1[\[Nu], z]*HankelH2[\[Nu]+ 1, z] == - 4*I/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.6#E3X Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\BesselJ{0}'@{z} = -\BesselJ{1}@{z}} diff( BesselJ(0, z), z$(1) ) = - BesselJ(1, z) D[BesselJ[0, z], {z, 1}] == - BesselJ[1, z] Skipped - no semantic math Skipped - no semantic math - -
10.6#E3X Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\BesselY{0}'@{z} = -\BesselY{1}@{z}} diff( BesselY(0, z), z$(1) ) = - BesselY(1, z) D[BesselY[0, z], {z, 1}] == - BesselY[1, z] Skipped - no semantic math Skipped - no semantic math - -
10.6#E3Xa Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\HankelH{1}{0}'@{z} = -\HankelH{1}{1}@{z}} diff( HankelH1(0, z), z$(1) ) = - HankelH1(1, z) D[HankelH1[0, z], {z, 1}] == - HankelH1[1, z] Skipped - no semantic math Skipped - no semantic math - -
10.6#E3Xa Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\HankelH{2}{0}'@{z} = -\HankelH{2}{1}@{z}} diff( HankelH2(0, z), z$(1) ) = - HankelH2(1, z) D[HankelH2[0, z], {z, 1}] == - HankelH2[1, z] Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{\nu-1}(z)+f_{\nu+1}(z) = (2\nu/\lambda)z^{-q}f_{\nu}(z)} f[nu - 1]*(z)+ f[nu + 1]*(z) = (2*nu/ lambda)* (z)^(- q)* f[nu]*(z) Subscript[f, \[Nu]- 1]*(z)+ Subscript[f, \[Nu]+ 1]*(z) == (2*\[Nu]/ \[Lambda])* (z)^(- q)* Subscript[f, \[Nu]]*(z) Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu+1}-p_{\nu-1} = -\frac{2\nu}{a}q_{\nu}-\frac{2\nu}{b}r_{\nu}} p[nu + 1]- p[nu - 1] = -(2*nu)/(a)*q[nu]-(2*nu)/(b)*r[nu] Subscript[p, \[Nu]+ 1]- Subscript[p, \[Nu]- 1] == -Divide[2*\[Nu],a]*Subscript[q, \[Nu]]-Divide[2*\[Nu],b]*Subscript[r, \[Nu]] Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q_{\nu+1}+r_{\nu} = \frac{\nu}{a}p_{\nu}-\frac{\nu+1}{b}p_{\nu+1}} q[nu + 1]+ r[nu] = (nu)/(a)*p[nu]-(nu + 1)/(b)*p[nu + 1] Subscript[q, \[Nu]+ 1]+ Subscript[r, \[Nu]] == Divide[\[Nu],a]*Subscript[p, \[Nu]]-Divide[\[Nu]+ 1,b]*Subscript[p, \[Nu]+ 1] Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r_{\nu+1}+q_{\nu} = \frac{\nu}{b}p_{\nu}-\frac{\nu+1}{a}p_{\nu+1}} r[nu + 1]+ q[nu] = (nu)/(b)*p[nu]-(nu + 1)/(a)*p[nu + 1] Subscript[r, \[Nu]+ 1]+ Subscript[q, \[Nu]] == Divide[\[Nu],b]*Subscript[p, \[Nu]]-Divide[\[Nu]+ 1,a]*Subscript[p, \[Nu]+ 1] Skipped - no semantic math Skipped - no semantic math - -
10.6#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{\nu} = \tfrac{1}{2}p_{\nu+1}+\tfrac{1}{2}p_{\nu-1}-\frac{\nu^{2}}{ab}p_{\nu}} s[nu] = (1)/(2)*p[nu + 1]+(1)/(2)*p[nu - 1]-((nu)^(2))/(a*b)*p[nu] Subscript[s, \[Nu]] == Divide[1,2]*Subscript[p, \[Nu]+ 1]+Divide[1,2]*Subscript[p, \[Nu]- 1]-Divide[\[Nu]^(2),a*b]*Subscript[p, \[Nu]] Skipped - no semantic math Skipped - no semantic math - -
10.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{\nu}s_{\nu}-q_{\nu}r_{\nu} = 4/(\pi^{2}ab)} p[nu]*s[nu]- q[nu]*r[nu] = 4/((Pi)^(2)* a*b) Subscript[p, \[Nu]]*Subscript[s, \[Nu]]- Subscript[q, \[Nu]]*Subscript[r, \[Nu]] == 4/((Pi)^(2)* a*b) Skipped - no semantic math Skipped - no semantic math - -
10.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{n}@{z} = -\frac{(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\tfrac{1}{4}z^{2}\right)^{k}+\frac{2}{\pi}\ln@{\tfrac{1}{2}z}\BesselJ{n}@{z}-\frac{(\tfrac{1}{2}z)^{n}}{\pi}\sum_{k=0}^{\infty}(\digamma@{k+1}+\digamma@{n+k+1})\frac{(-\tfrac{1}{4}z^{2})^{k}}{k!(n+k)!}} BesselY(n, z) = -(((1)/(2)*z)^(- n))/(Pi)*sum((factorial(n - k - 1))/(factorial(k))*((1)/(4)*(z)^(2))^(k), k = 0..n - 1)+(2)/(Pi)*ln((1)/(2)*z)*BesselJ(n, z)-(((1)/(2)*z)^(n))/(Pi)*sum((Psi(k + 1)+ Psi(n + k + 1))*((-(1)/(4)*(z)^(2))^(k))/(factorial(k)*factorial(n + k)), k = 0..infinity) BesselY[n, z] == -Divide[(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(n - k - 1)!,(k)!]*(Divide[1,4]*(z)^(2))^(k), {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*Log[Divide[1,2]*z]*BesselJ[n, z]-Divide[(Divide[1,2]*z)^(n),Pi]*Sum[(PolyGamma[k + 1]+ PolyGamma[n + k + 1])*Divide[(-Divide[1,4]*(z)^(2))^(k),(k)!*(n + k)!], {k, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out
Failed [6 / 21]
{Plus[-0.4244131815783875, Times[0.4244131815783876, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[32, 3], Power[1.5, -6], Plus[3, Times[Rational[1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}
Plus[-0.8841941282883073, Times[0.3183098861837907, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[-4, []], Times[Plus[12, Times[8, ]], [Plus[1, ]]], Times[Plus[-16, Times[-16, ], Times[-4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[2, ], Power[1.5, 2], [Plus[3, ]]]], 0], Equal[[1], 1], Equal[[2], Plus[1, Times[4, Power[1.5, -2]]]], Equal[[3], Plus[Rational[1, 2], Times[16, Power[1.5, -4], Plus[2, Times[Rational[1, 4], Power[1.5, 2]]]]]], Equal[[4], Times[Rational[32, 3], Power[1.5, -6], Plus[3, Times[Rational[1, 4], Power[1.5, 2]]], Plus[12, Times[Rational[1, 16], Power[1.5, 4]]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}
10.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}+\frac{2}{\pi}\left(\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}-(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}-\dotsi\right)} BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)* BesselJ(0, z)+(2)/(Pi)*(((1)/(4)*(z)^(2))/((factorial(1))^(2))-(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))- .. ) BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)* BesselJ[0, z]+Divide[2,Pi]*(Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]-(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]- \[Ellipsis]) Error Failure -
Failed [7 / 7]
{Plus[Complex[0.08653583575184755, 0.12491815695491987], Times[-0.6366197723675814, Plus[Complex[0.13592303240740744, 0.19620888054491187], Times[-1.0, …]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.07160606681826986, -0.15074612001799426], Times[-0.6366197723675814, Plus[Complex[-0.11248553240740736, -0.23680382134730746], Times[-1.0, …]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z}\BesselJ{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(-\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}} BesselJ(nu, z)*BesselJ(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*(-(1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity) BesselJ[\[Nu], z]*BesselJ[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(-Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out
Failed [300 / 300]
{Plus[Complex[0.18482793500467376, -0.06270111308873656], Times[Complex[-0.17426361621858172, -0.037827155645948574], NSum[Times[Power[Times[Rational[-1, 4], Power[E, Times[Complex[0, Rational[1, 3]], Pi]]], k], Power[Factorial[k], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]], -2], Subscript[Plus[1, Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], k], k]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[0.47215054540190965, -0.036453907426047115], Times[Complex[-0.27630938504679325, 0.26010894184513544], NSum[Times[Power[Times[Rational[-1, 4], Power[E, Times[Complex[0, Rational[1, 3]], Pi]]], k], Power[Factorial[k], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]], -1], Power[Gamma[Plus[1, Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k]], -1], Subscript[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], k]] <- {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}}\diff{\theta}} BesselJ(0, z) = (1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi) BesselJ[0, z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Successful Successful -
Failed [4 / 7]
{Complex[0.1024204169391214, -0.20298051839359257] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.35155242920280916, 0.2300320660405755] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}\diff{\theta}} (1)/(Pi)*int(cos(z*sin(theta)), theta = 0..Pi) = (1)/(Pi)*int(cos(z*cos(theta)), theta = 0..Pi) Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cos[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
10.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-n\theta}\diff{\theta}} BesselJ(n, z) = (1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi) BesselJ[n, z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] Failure Error Successful [Tested: 7] Successful [Tested: 7]
10.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-n\theta}\diff{\theta} = \frac{i^{-n}}{\pi}\int_{0}^{\pi}e^{iz\cos@@{\theta}}\cos@{n\theta}\diff{\theta}} (1)/(Pi)*int(cos(z*sin(theta)- n*theta), theta = 0..Pi) = ((I)^(- n))/(Pi)*int(exp(I*z*cos(theta))*cos(n*theta), theta = 0..Pi) Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(I)^(- n),Pi]*Integrate[Exp[I*z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] Failure Error Successful [Tested: 7] Skipped - Because timed out
10.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}} BesselJ(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] Error Successful -
Failed [20 / 35]
{Complex[0.009683985979314524, -0.05759180507972181] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.21993206762171735, 0.08917811286212163] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
10.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{\pi}\cos@{z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\cos@{zt}\diff{t}} (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(cos(z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* cos(z*t), t = 0..1) Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Cos[z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[2*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Cos[z*t], {t, 0, 1}, GenerateConditions->None] Error Successful - Successful [Tested: 35]
10.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}\left(\int_{0}^{1}(1-t^{2})^{\nu-\frac{1}{2}}\sin@{zt}\diff{t}-\int_{0}^{\infty}e^{-zt}(1+t^{2})^{\nu-\frac{1}{2}}\diff{t}\right)} BesselY(nu, z) = (2*((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*(int((1 - (t)^(2))^(nu -(1)/(2))* sin(z*t), t = 0..1)- int(exp(- z*t)*(1 + (t)^(2))^(nu -(1)/(2)), t = 0..infinity)) BesselY[\[Nu], z] == Divide[2*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*(Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Sin[z*t], {t, 0, 1}, GenerateConditions->None]- Integrate[Exp[- z*t]*(1 + (t)^(2))^(\[Nu]-Divide[1,2]), {t, 0, Infinity}, GenerateConditions->None]) Successful Successful -
Failed [15 / 25]
{Complex[-0.9495382353861556, 0.46093572348323536] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 1.5]}
Complex[-0.7706973036767981, 0.20650772012904162] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 0.5]}
10.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\cos@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\sinh@@{t}-\nu t}\diff{t}} BesselJ(nu, z) = (1)/(Pi)*int(cos(z*sin(theta)- nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*sinh(t)- nu*t), t = 0..infinity) BesselJ[\[Nu], z] == Divide[1,Pi]*Integrate[Cos[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Sinh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error
Failed [1 / 50]
1/50]: [[-.1812319652 <- {nu = -1/2, z = 3/2}
Skipped - Because timed out
10.9.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}\sin@{z\sin@@{\theta}-\nu\theta}\diff{\theta}-\frac{1}{\pi}\int_{0}^{\infty}\left(e^{\nu t}+e^{-\nu t}\cos@{\nu\pi}\right)e^{-z\sinh@@{t}}\diff{t}} BesselY(nu, z) = (1)/(Pi)*int(sin(z*sin(theta)- nu*theta), theta = 0..Pi)-(1)/(Pi)*int((exp(nu*t)+ exp(- nu*t)*cos(nu*Pi))* exp(- z*sinh(t)), t = 0..infinity) BesselY[\[Nu], z] == Divide[1,Pi]*Integrate[Sin[z*Sin[\[Theta]]- \[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[1,Pi]*Integrate[(Exp[\[Nu]*t]+ Exp[- \[Nu]*t]*Cos[\[Nu]*Pi])* Exp[- z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{x} = \frac{2}{\pi}\int_{0}^{\infty}\sin@{x\cosh@@{t}-\tfrac{1}{2}\nu\pi}\cosh@{\nu t}\diff{t}} BesselJ(nu, x) = (2)/(Pi)*int(sin(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity) BesselJ[\[Nu], x] == Divide[2,Pi]*Integrate[Sin[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{x} = -\frac{2}{\pi}\int_{0}^{\infty}\cos@{x\cosh@@{t}-\tfrac{1}{2}\nu\pi}\cosh@{\nu t}\diff{t}} BesselY(nu, x) = -(2)/(Pi)*int(cos(x*cosh(t)-(1)/(2)*nu*Pi)*cosh(nu*t), t = 0..infinity) BesselY[\[Nu], x] == -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]-Divide[1,2]*\[Nu]*Pi]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}@{x} = \frac{2}{\pi}\int_{0}^{\infty}\sin@{x\cosh@@{t}}\diff{t}} BesselJ(0, x) = (2)/(Pi)*int(sin(x*cosh(t)), t = 0..infinity) BesselJ[0, x] == Divide[2,Pi]*Integrate[Sin[x*Cosh[t]], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{0}@{x} = -\frac{2}{\pi}\int_{0}^{\infty}\cos@{x\cosh@@{t}}\diff{t}} BesselY(0, x) = -(2)/(Pi)*int(cos(x*cosh(t)), t = 0..infinity) BesselY[0, x] == -Divide[2,Pi]*Integrate[Cos[x*Cosh[t]], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{x} = \frac{2(\tfrac{1}{2}x)^{-\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\tfrac{1}{2}-\nu}}\int_{1}^{\infty}\frac{\sin@{xt}\diff{t}}{(t^{2}-1)^{\nu+\frac{1}{2}}}} BesselJ(nu, x) = (2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((sin(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity) BesselJ[\[Nu], x] == Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Sin[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}, GenerateConditions->None] Successful Error - Successful [Tested: 15]
10.9#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{x} = -\frac{2(\tfrac{1}{2}x)^{-\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\tfrac{1}{2}-\nu}}\int_{1}^{\infty}\frac{\cos@{xt}\diff{t}}{(t^{2}-1)^{\nu+\frac{1}{2}}}} BesselY(nu, x) = -(2*((1)/(2)*x)^(- nu))/((Pi)^((1)/(2))* GAMMA((1)/(2)- nu))*int((cos(x*t))/(((t)^(2)- 1)^(nu +(1)/(2))), t = 1..infinity) BesselY[\[Nu], x] == -Divide[2*(Divide[1,2]*x)^(- \[Nu]),(Pi)^(Divide[1,2])* Gamma[Divide[1,2]- \[Nu]]]*Integrate[Divide[Cos[x*t],((t)^(2)- 1)^(\[Nu]+Divide[1,2])], {t, 1, Infinity}, GenerateConditions->None] Successful Error - Skip - No test values generated
10.9.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-\pi i}^{\infty+\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}} BesselJ(nu, z) = (1)/(2*Pi*I)*int(exp(z*sinh(t)- nu*t), t = infinity - Pi*I..infinity + Pi*I) BesselJ[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, Infinity - Pi*I, Infinity + Pi*I}, GenerateConditions->None] Error Failure -
Failed [70 / 70]
{Complex[0.4358908643715884, -0.07192294931339177] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.0679098760861825, 0.09257666026367889] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.9#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{z} = \frac{1}{\pi i}\int_{-\infty}^{\infty+\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}} HankelH1(nu, z) = (1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity + Pi*I) HankelH1[\[Nu], z] == Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity + Pi*I}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{z} = -\frac{1}{\pi i}\int_{-\infty}^{\infty-\pi i}e^{z\sinh@@{t}-\nu t}\diff{t}} HankelH2(nu, z) = -(1)/(Pi*I)*int(exp(z*sinh(t)- nu*t), t = - infinity..infinity - Pi*I) HankelH2[\[Nu], z] == -Divide[1,Pi*I]*Integrate[Exp[z*Sinh[t]- \[Nu]*t], {t, - Infinity, Infinity - Pi*I}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.9.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{2\pi i}\int_{-\infty}^{(0+)}\exp@{t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}} BesselJ(nu, z) = (((1)/(2)*z)^(nu))/(2*Pi*I)*int(exp(t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = - infinity..(0 +)) BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],2*Pi*I]*Integrate[Exp[t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, - Infinity, (0 +)}, GenerateConditions->None] Error Failure - Error
10.9.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{\EulerGamma@{\frac{1}{2}-\nu}(\frac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{0}^{(1+)}\cos@{zt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}} BesselJ(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(cos(z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 0..(1 +)) BesselJ[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Cos[z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 0, (1 +)}, GenerateConditions->None] Error Failure - Error
10.9#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{z} = \frac{\EulerGamma@{\tfrac{1}{2}-\nu}(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1+i\infty}^{(1+)}e^{izt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}} HankelH1(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 + I*infinity..(1 +)) HankelH1[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Exp[I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 + I*Infinity, (1 +)}, GenerateConditions->None] Error Failure - Error
10.9#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{z} = \frac{\EulerGamma@{\tfrac{1}{2}-\nu}(\tfrac{1}{2}z)^{\nu}}{\pi^{\frac{3}{2}}i}\int_{1-i\infty}^{(1+)}e^{-izt}(t^{2}-1)^{\nu-\frac{1}{2}}\diff{t}} HankelH2(nu, z) = (GAMMA((1)/(2)- nu)*((1)/(2)*z)^(nu))/((Pi)^((3)/(2))* I)*int(exp(- I*z*t)*((t)^(2)- 1)^(nu -(1)/(2)), t = 1 - I*infinity..(1 +)) HankelH2[\[Nu], z] == Divide[Gamma[Divide[1,2]- \[Nu]]*(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[3,2])* I]*Integrate[Exp[- I*z*t]*((t)^(2)- 1)^(\[Nu]-Divide[1,2]), {t, 1 - I*Infinity, (1 +)}, GenerateConditions->None] Error Failure - Error
10.9.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{1}{2\pi i}\int_{-\infty-ic}^{-\infty+ic}\frac{\EulerGamma@{t}}{\EulerGamma@{\nu-t+1}}(\tfrac{1}{2}z)^{\nu-2t}\diff{t}} BesselJ(nu, z) = (1)/(2*Pi*I)*int((GAMMA(t))/(GAMMA(nu - t + 1))*((1)/(2)*z)^(nu - 2*t), t = - infinity - I*c..- infinity + I*c) BesselJ[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Divide[Gamma[t],Gamma[\[Nu]- t + 1]]*(Divide[1,2]*z)^(\[Nu]- 2*t), {t, - Infinity - I*c, - Infinity + I*c}, GenerateConditions->None] Failure Failure Skipped - Because timed out
Failed [300 / 300]
{Complex[0.4358908643715884, -0.07192294931339177] <- {Rule[c, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.0679098760861825, 0.09257666026367889] <- {Rule[c, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.9.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{z} = -\frac{e^{-\frac{1}{2}\nu\pi i}}{2\pi^{2}}\*\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(-\tfrac{1}{2}iz)^{\nu-2t}\diff{t}} HankelH1(nu, z) = -(exp(-(1)/(2)*nu*Pi*I))/(2*(Pi)^(2))* int(GAMMA(t)*GAMMA(t - nu)*(-(1)/(2)*I*z)^(nu - 2*t), t = c - I*infinity..c + I*infinity) HankelH1[\[Nu], z] == -Divide[Exp[-Divide[1,2]*\[Nu]*Pi*I],2*(Pi)^(2)]* Integrate[Gamma[t]*Gamma[t - \[Nu]]*(-Divide[1,2]*I*z)^(\[Nu]- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Error
Failed [120 / 120]
120/120]: [[.2971181619-.8401954886*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
-.8661908042+.2691615148*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
10.9.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{z} = \frac{e^{\frac{1}{2}\nu\pi i}}{2\pi^{2}}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}iz)^{\nu-2t}\diff{t}} HankelH2(nu, z) = (exp((1)/(2)*nu*Pi*I))/(2*(Pi)^(2))*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*I*z)^(nu - 2*t), t = c - I*infinity..c + I*infinity) HankelH2[\[Nu], z] == Divide[Exp[Divide[1,2]*\[Nu]*Pi*I],2*(Pi)^(2)]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*I*z)^(\[Nu]- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Error
Failed [120 / 120]
120/120]: [[-.1414870617+.1246394392*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
-.1498748781e-1-.1846515642*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}
Skipped - Because timed out
10.9.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\mu}@{z}\BesselJ{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\pi/2}\BesselJ{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}} BesselJ(mu, z)*BesselJ(nu, z) = (2)/(Pi)*int(BesselJ(mu + nu, 2*z*cos(theta))*cos((mu - nu)* theta), theta = 0..Pi/ 2) BesselJ[\[Mu], z]*BesselJ[\[Nu], z] == Divide[2,Pi]*Integrate[BesselJ[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])* \[Theta]], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Failure Error - Skipped - Because timed out
10.9.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z}\BesselJ{\nu}@{\zeta} = \frac{2}{\pi}\int_{0}^{\pi/2}\BesselJ{2\nu}@{2(z\zeta)^{\frac{1}{2}}\sin@@{\theta}}\cos@{(z-\zeta)\cos@@{\theta}}\diff{\theta}} BesselJ(nu, z)*BesselJ(nu, zeta) = (2)/(Pi)*int(BesselJ(2*nu, 2*(z*zeta)^((1)/(2))* sin(theta))*cos((z - zeta)* cos(theta)), theta = 0..Pi/ 2) BesselJ[\[Nu], z]*BesselJ[\[Nu], \[Zeta]] == Divide[2,Pi]*Integrate[BesselJ[2*\[Nu], 2*(z*\[Zeta])^(Divide[1,2])* Sin[\[Theta]]]*Cos[(z - \[Zeta])* Cos[\[Theta]]], {\[Theta], 0, Pi/ 2}, GenerateConditions->None] Failure Error - Skipped - Because timed out
10.9.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z}\BesselJ{\nu}@{\zeta} = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\*\exp@{\frac{1}{2}t-\frac{z^{2}+\zeta^{2}}{2t}}\modBesselI{\nu}@{\frac{z\zeta}{t}}\frac{\diff{t}}{t}} BesselJ(nu, z)*BesselJ(nu, zeta) = (1)/(2*Pi*I)*int(* exp((1)/(2)*t -((z)^(2)+ (zeta)^(2))/(2*t))*BesselI(nu, (z*zeta)/(t))*(1)/(t), t = c - I*infinity..c + I*infinity) BesselJ[\[Nu], z]*BesselJ[\[Nu], \[Zeta]] == Divide[1,2*Pi*I]*Integrate[* Exp[Divide[1,2]*t -Divide[(z)^(2)+ \[Zeta]^(2),2*t]]*BesselI[\[Nu], Divide[z*\[Zeta],t]]*Divide[1,t], {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Error Failure - Error
10.9.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}^{2}@{z}+\BesselY{\nu}^{2}@{z} = \frac{8}{\pi^{2}}\int_{0}^{\infty}\cosh@{2\nu t}\modBesselK{0}@{2z\sinh@@{t}}\diff{t}} (BesselJ(nu, z))^(2)+ (BesselY(nu, z))^(2) = (8)/((Pi)^(2))*int(cosh(2*nu*t)*BesselK(0, 2*z*sinh(t)), t = 0..infinity) (BesselJ[\[Nu], z])^(2)+ (BesselY[\[Nu], z])^(2) == Divide[8,(Pi)^(2)]*Integrate[Cosh[2*\[Nu]*t]*BesselK[0, 2*z*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{ze^{m\pi i}} = e^{m\nu\pi i}\BesselJ{\nu}@{z}} BesselJ(nu, z*exp(m*Pi*I)) = exp(m*nu*Pi*I)*BesselJ(nu, z) BesselJ[\[Nu], z*Exp[m*Pi*I]] == Exp[m*\[Nu]*Pi*I]*BesselJ[\[Nu], z] Failure Failure
Failed [132 / 210]
132/210]: [[-1.978604450-.5916012221*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
.4256613630-.5580360922e-1*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
Failed [120 / 210]
{Complex[-1.9786044502778974, -0.5916012230349773] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.42566136315461117, -0.05580360945599949] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{ze^{m\pi i}} = e^{-m\nu\pi i}\BesselY{\nu}@{z}+2i\sin@{m\nu\pi}\cot@{\nu\pi}\BesselJ{\nu}@{z}} BesselY(nu, z*exp(m*Pi*I)) = exp(- m*nu*Pi*I)*BesselY(nu, z)+ 2*I*sin(m*nu*Pi)*cot(nu*Pi)*BesselJ(nu, z) BesselY[\[Nu], z*Exp[m*Pi*I]] == Exp[- m*\[Nu]*Pi*I]*BesselY[\[Nu], z]+ 2*I*Sin[m*\[Nu]*Pi]*Cot[\[Nu]*Pi]*BesselJ[\[Nu], z] Failure Failure
Failed [170 / 210]
170/210]: [[-4.492502702+3.271310776*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
19.72399963+2.416868418*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
Failed [162 / 210]
{Complex[-4.49250270148862, 3.2713107749000305] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[19.723999620348792, 2.416868461226219] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{\nu\pi}\HankelH{1}{\nu}@{ze^{m\pi i}} = -\sin@{(m-1)\nu\pi}\HankelH{1}{\nu}@{z}-e^{-\nu\pi i}\sin@{m\nu\pi}\HankelH{2}{\nu}@{z}} sin(nu*Pi)*HankelH1(nu, z*exp(m*Pi*I)) = - sin((m - 1)* nu*Pi)*HankelH1(nu, z)- exp(- nu*Pi*I)*sin(m*nu*Pi)*HankelH2(nu, z) Sin[\[Nu]*Pi]*HankelH1[\[Nu], z*Exp[m*Pi*I]] == - Sin[(m - 1)* \[Nu]*Pi]*HankelH1[\[Nu], z]- Exp[- \[Nu]*Pi*I]*Sin[m*\[Nu]*Pi]*HankelH2[\[Nu], z] Failure Failure
Failed [132 / 210]
132/210]: [[-16.06107638+5.815014709*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
39.27071892+24.34608468*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
Failed [120 / 210]
{Complex[-16.061076381218605, 5.815014694873561] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[39.27071883811536, 24.346084784539414] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{\nu\pi}\HankelH{2}{\nu}@{ze^{m\pi i}} = e^{\nu\pi i}\sin@{m\nu\pi}\HankelH{1}{\nu}@{z}+\sin@{(m+1)\nu\pi}\HankelH{2}{\nu}@{z}} sin(nu*Pi)*HankelH2(nu, z*exp(m*Pi*I)) = exp(nu*Pi*I)*sin(m*nu*Pi)*HankelH1(nu, z)+ sin((m + 1)* nu*Pi)*HankelH2(nu, z) Sin[\[Nu]*Pi]*HankelH2[\[Nu], z*Exp[m*Pi*I]] == Exp[\[Nu]*Pi*I]*Sin[m*\[Nu]*Pi]*HankelH1[\[Nu], z]+ Sin[(m + 1)* \[Nu]*Pi]*HankelH2[\[Nu], z] Failure Failure
Failed [132 / 210]
132/210]: [[9.518923666+1.283901315*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 1}
-38.63237633-26.24866521*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 2}
Failed [120 / 210]
{Complex[9.518923662743454, 1.2839013369012835] <- {Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-38.63237622058036, -26.24866530437453] <- {Rule[m, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\nu}@{ze^{\pi i}} = -e^{-\nu\pi i}\HankelH{2}{\nu}@{z}} HankelH1(nu, z*exp(Pi*I)) = - exp(- nu*Pi*I)*HankelH2(nu, z) HankelH1[\[Nu], z*Exp[Pi*I]] == - Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z] Failure Failure
Failed [20 / 70]
20/70]: [[-5.249915228-5.084103922*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
-3.129030441-5.176244122*I <- {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Failed [20 / 70]
{Complex[-5.2499152251779275, -5.084103924523598] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.4609763579335797, 35.01102127779514] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.11#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\nu}@{ze^{-\pi i}} = -e^{\nu\pi i}\HankelH{1}{\nu}@{z}} HankelH2(nu, z*exp(- Pi*I)) = - exp(nu*Pi*I)*HankelH1(nu, z) HankelH2[\[Nu], z*Exp[- Pi*I]] == - Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z] Failure Failure
Failed [50 / 70]
50/70]: [[1.033334476+.7163604616*I <- {nu = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}
1.427918302+.5187414665*I <- {nu = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}
Failed [50 / 70]
{Complex[1.0333344760783634, 0.7163604618419928] <- {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.538721989873022, -0.29666827540401164] <- {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{n}@{ze^{m\pi i}} = (-1)^{mn}(\BesselY{n}@{z}+2im\BesselJ{n}@{z})} BesselY(n, z*exp(m*Pi*I)) = (- 1)^(m*n)*(BesselY(n, z)+ 2*I*m*BesselJ(n, z)) BesselY[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)*(BesselY[n, z]+ 2*I*m*BesselJ[n, z]) Failure Failure
Failed [57 / 63]
57/63]: [[-.7553141392+1.723217630*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
.3969469092-.2695422112*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
Failed [48 / 63]
{Complex[-0.7553141389736522, 1.7232176296930342] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.39694690825884216, -0.26954221211204654] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{n}@{ze^{m\pi i}} = (-1)^{mn-1}((m-1)\HankelH{1}{n}@{z}+m\HankelH{2}{n}@{z})} HankelH1(n, z*exp(m*Pi*I)) = (- 1)^(m*n - 1)*((m - 1)*HankelH1(n, z)+ m*HankelH2(n, z)) HankelH1[n, z*Exp[m*Pi*I]] == (- 1)^(m*n - 1)*((m - 1)*HankelH1[n, z]+ m*HankelH2[n, z]) Failure Failure
Failed [57 / 63]
57/63]: [[-1.723217630-.7553141394*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
.2695422111+.3969469092*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
Failed [48 / 63]
{Complex[-1.7232176296930342, -0.7553141389736522] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.26954221211204654, 0.39694690825884216] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{n}@{ze^{m\pi i}} = (-1)^{mn}(m\HankelH{1}{n}@{z}+(m+1)\HankelH{2}{n}@{z})} HankelH2(n, z*exp(m*Pi*I)) = (- 1)^(m*n)*(m*HankelH1(n, z)+(m + 1)*HankelH2(n, z)) HankelH2[n, z*Exp[m*Pi*I]] == (- 1)^(m*n)*(m*HankelH1[n, z]+(m + 1)*HankelH2[n, z]) Failure Failure
Failed [57 / 63]
57/63]: [[1.723217630+.755314139*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 1}
-.269542211-.396946909*I <- {z = 1/2*3^(1/2)+1/2*I, m = 1, n = 2}
Failed [48 / 63]
{Complex[1.7232176296930342, 0.7553141389736524] <- {Rule[m, 1], Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.26954221211204654, -0.39694690825884216] <- {Rule[m, 1], Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.11#E9X Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\BesselJ{\nu}@{\conj{z}} = \conj{\BesselJ{\nu}@{z}}} BesselJ(nu, conjugate(z)) = conjugate(BesselJ(nu, z)) BesselJ[\[Nu], Conjugate[z]] == Conjugate[BesselJ[\[Nu], z]] Skipped - no semantic math Skipped - no semantic math - -
10.11#E9X Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\BesselY{\nu}@{\conj{z}} = \conj{\BesselY{\nu}@{z}}} BesselY(nu, conjugate(z)) = conjugate(BesselY(nu, z)) BesselY[\[Nu], Conjugate[z]] == Conjugate[BesselY[\[Nu], z]] Skipped - no semantic math Skipped - no semantic math - -
10.11#E9Xa Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\HankelH{1}{\nu}@{\conj{z}} = \conj{\HankelH{2}{\nu}@{z}}} HankelH1(nu, conjugate(z)) = conjugate(HankelH2(nu, z)) HankelH1[\[Nu], Conjugate[z]] == Conjugate[HankelH2[\[Nu], z]] Skipped - no semantic math Skipped - no semantic math - -
10.11#E9Xa Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \displaystyle\HankelH{2}{\nu}@{\conj{z}} = \conj{\HankelH{1}{\nu}@{z}}} HankelH2(nu, conjugate(z)) = conjugate(HankelH1(nu, z)) HankelH2[\[Nu], Conjugate[z]] == Conjugate[HankelH1[\[Nu], z]] Skipped - no semantic math Skipped - no semantic math - -
10.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}} exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity) Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None] Failure Successful Successful [Tested: 42] Successful [Tested: 42]
10.12#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}} cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity) Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}} sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)* theta), k = 0..infinity) Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)* \[Theta]], {k, 0, Infinity}, GenerateConditions->None] Error Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}} cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity) Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None] Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}} sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)* theta), k = 0..infinity) Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)* \[Theta]], {k, 0, Infinity}, GenerateConditions->None] Error Successful Skipped - Because timed out Successful [Tested: 70]
10.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb} 1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ .. 1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.12#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb} cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ .. Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.12#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb} sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- .. Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], …] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], …] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.12#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb} (1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ .. Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.12#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi} (1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- .. Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], …] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], …] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.13.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w^{(2n)} = (-1)^{n}\lambda^{2n}z^{-n}w} (w)^(2*n) = (- 1)^(n)* (lambda)^(2*n)* (z)^(- n)* w (w)^(2*n) == (- 1)^(n)* \[Lambda]^(2*n)* (z)^(- n)* w Skipped - no semantic math Skipped - no semantic math - -
10.13.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\vartheta^{4}-2(\nu^{2}+\mu^{2})\vartheta^{2}+(\nu^{2}-\mu^{2})^{2}\right)w+4z^{2}(\vartheta+1)(\vartheta+2)w = 0} ((vartheta)^(4)- 2*((nu)^(2)+ (mu)^(2))*(vartheta)^(2)+((nu)^(2)- (mu)^(2))^(2))* w + 4*(z)^(2)*(vartheta + 1)*(vartheta + 2)* w = 0 (\[CurlyTheta]^(4)- 2*(\[Nu]^(2)+ \[Mu]^(2))*\[CurlyTheta]^(2)+(\[Nu]^(2)- \[Mu]^(2))^(2))* w + 4*(z)^(2)*(\[CurlyTheta]+ 1)*(\[CurlyTheta]+ 2)* w == 0 Skipped - no semantic math Skipped - no semantic math - -
10.14#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{\nu}@{x}| \leq 1} abs(BesselJ(nu, x)) <= 1 Abs[BesselJ[\[Nu], x]] <= 1 Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{\nu}@{x}| \leq 2^{-\frac{1}{2}}} abs(BesselJ(nu, x)) <= (2)^(-(1)/(2)) Abs[BesselJ[\[Nu], x]] <= (2)^(-Divide[1,2]) Failure Failure Successful [Tested: 2] Successful [Tested: 2]
10.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \BesselJ{\nu}@{\nu}} 0 < BesselJ(nu, nu) 0 < BesselJ[\[Nu], \[Nu]] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{\nu} < \frac{2^{\frac{1}{3}}}{3^{\frac{2}{3}}\EulerGamma@{\tfrac{2}{3}}\nu^{\frac{1}{3}}}} BesselJ(nu, nu) < ((2)^((1)/(3)))/((3)^((2)/(3))* GAMMA((2)/(3))*(nu)^((1)/(3))) BesselJ[\[Nu], \[Nu]] < Divide[(2)^(Divide[1,3]),(3)^(Divide[2,3])* Gamma[Divide[2,3]]*\[Nu]^(Divide[1,3])] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{n}@{z}| \leq e^{|\imagpart@@{z}|}} abs(BesselJ(n, z)) <= exp(abs(Im(z))) Abs[BesselJ[n, z]] <= Exp[Abs[Im[z]]] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{\nu}@{z}| \leq \frac{|\tfrac{1}{2}z|^{\nu}e^{|\imagpart@@{z}|}}{\EulerGamma@{\nu+1}}} abs(BesselJ(nu, z)) <= ((abs((1)/(2)*z))^(nu)* exp(abs(Im(z))))/(GAMMA(nu + 1)) Abs[BesselJ[\[Nu], z]] <= Divide[(Abs[Divide[1,2]*z])^\[Nu]* Exp[Abs[Im[z]]],Gamma[\[Nu]+ 1]] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{\nu}@{\nu x}| \leq \frac{x^{\nu}\exp@{\nu(1-x^{2})^{\frac{1}{2}}}}{\left(1+(1-x^{2})^{\frac{1}{2}}\right)^{\nu}}} abs(BesselJ(nu, nu*x)) <= ((x)^(nu)* exp(nu*(1 - (x)^(2))^((1)/(2))))/((1 +(1 - (x)^(2))^((1)/(2)))^(nu)) Abs[BesselJ[\[Nu], \[Nu]*x]] <= Divide[(x)^\[Nu]* Exp[\[Nu]*(1 - (x)^(2))^(Divide[1,2])],(1 +(1 - (x)^(2))^(Divide[1,2]))^\[Nu]] Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{\nu}'@{\nu x}| \leq \frac{(1+x^{2})^{\frac{1}{4}}}{x(2\pi\nu)^{\frac{1}{2}}}\frac{x^{\nu}\exp@{\nu(1-x^{2})^{\frac{1}{2}}}}{\left(1+(1-x^{2})^{\frac{1}{2}}\right)^{\nu}}} abs(diff( BesselJ(nu, nu*x), nu*x$(1) )) <= ((1 + (x)^(2))^((1)/(4)))/(x*(2*Pi*nu)^((1)/(2)))*((x)^(nu)* exp(nu*(1 - (x)^(2))^((1)/(2))))/((1 +(1 - (x)^(2))^((1)/(2)))^(nu)) Abs[D[BesselJ[\[Nu], \[Nu]*x], {\[Nu]*x, 1}]] <= Divide[(1 + (x)^(2))^(Divide[1,4]),x*(2*Pi*\[Nu])^(Divide[1,2])]*Divide[(x)^\[Nu]* Exp[\[Nu]*(1 - (x)^(2))^(Divide[1,2])],(1 +(1 - (x)^(2))^(Divide[1,2]))^\[Nu]] Error Failure - Skip - No test values generated
10.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 \leq \frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}}} 1 <= (BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu)) 1 <= Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]] Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\BesselJ{\nu}@{\nu x}}{x^{\nu}\BesselJ{\nu}@{\nu}} \leq e^{\nu(1-x)}} (BesselJ(nu, nu*x))/((x)^(nu)* BesselJ(nu, nu)) <= exp(nu*(1 - x)) Divide[BesselJ[\[Nu], \[Nu]*x],(x)^\[Nu]* BesselJ[\[Nu], \[Nu]]] <= Exp[\[Nu]*(1 - x)] Failure Failure Successful [Tested: 3] Skip - No test values generated
10.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{n}@{nz}| \leq \frac{\left|z^{n}\exp@{n(1-z^{2})^{\frac{1}{2}}}\right|}{\left|1+(1-z^{2})^{\frac{1}{2}}\right|^{n}}} abs(BesselJ(n, n*z)) <= (abs((z)^(n)* exp(n*(1 - (z)^(2))^((1)/(2)))))/((abs(1 +(1 - (z)^(2))^((1)/(2))))^(n)) Abs[BesselJ[n, n*z]] <= Divide[Abs[(z)^(n)* Exp[n*(1 - (z)^(2))^(Divide[1,2])]],(Abs[1 +(1 - (z)^(2))^(Divide[1,2])])^(n)] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.14.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BesselJ{n}@{nz}| \leq 1} abs(BesselJ(n, n*z)) <= 1 Abs[BesselJ[n, n*z]] <= 1 Failure Failure Error Successful [Tested: 21]
10.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselJ{+\nu}@{z}}{\nu} = +\BesselJ{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}} diff(BesselJ(+ nu, z), nu) = + BesselJ(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((- 1)^(k)*(Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) D[BesselJ[+ \[Nu], z], \[Nu]] == + BesselJ[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out
Failed [7 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}
10.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselJ{-\nu}@{z}}{\nu} = -\BesselJ{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}} diff(BesselJ(- nu, z), nu) = - BesselJ(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((- 1)^(k)*(Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity) D[BesselJ[- \[Nu], z], \[Nu]] == - BesselJ[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out
Failed [7 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}
10.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselY{\nu}@{z}}{\nu} = \cot@{\nu\pi}\left(\pderiv{\BesselJ{\nu}@{z}}{\nu}-\pi\BesselY{\nu}@{z}\right)-\csc@{\nu\pi}\pderiv{\BesselJ{-\nu}@{z}}{\nu}-\pi\BesselJ{\nu}@{z}} diff(BesselY(nu, z), nu) = cot(nu*Pi)*(diff(BesselJ(nu, z), nu)- Pi*BesselY(nu, z))- csc(nu*Pi)*diff(BesselJ(- nu, z), nu)- Pi*BesselJ(nu, z) D[BesselY[\[Nu], z], \[Nu]] == Cot[\[Nu]*Pi]*(D[BesselJ[\[Nu], z], \[Nu]]- Pi*BesselY[\[Nu], z])- Csc[\[Nu]*Pi]*D[BesselJ[- \[Nu], z], \[Nu]]- Pi*BesselJ[\[Nu], z] Successful Failure -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.16#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\frac{1}{2}}@{z} = \BesselY{-\frac{1}{2}}@{z}} BesselJ((1)/(2), z) = BesselY(-(1)/(2), z) BesselJ[Divide[1,2], z] == BesselY[-Divide[1,2], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sin@@{z}} BesselY(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sin(z) BesselY[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sin[z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{-\frac{1}{2}}@{z} = -\BesselY{\frac{1}{2}}@{z}} BesselJ(-(1)/(2), z) = - BesselY((1)/(2), z) BesselJ[-Divide[1,2], z] == - BesselY[Divide[1,2], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\BesselY{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\cos@@{z}} - BesselY((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* cos(z) - BesselY[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Cos[z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{1}{\frac{1}{2}}@{z} = -i\HankelH{1}{-\frac{1}{2}}@{z}} HankelH1((1)/(2), z) = - I*HankelH1(-(1)/(2), z) HankelH1[Divide[1,2], z] == - I*HankelH1[-Divide[1,2], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -i\HankelH{1}{-\frac{1}{2}}@{z} = -i\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}e^{iz}} - I*HankelH1(-(1)/(2), z) = - I*((2)/(Pi*z))^((1)/(2))* exp(I*z) - I*HankelH1[-Divide[1,2], z] == - I*(Divide[2,Pi*z])^(Divide[1,2])* Exp[I*z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelH{2}{\frac{1}{2}}@{z} = i\HankelH{2}{-\frac{1}{2}}@{z}} HankelH2((1)/(2), z) = I*HankelH2(-(1)/(2), z) HankelH2[Divide[1,2], z] == I*HankelH2[-Divide[1,2], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.16#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle i\HankelH{2}{-\frac{1}{2}}@{z} = i\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}e^{-iz}} I*HankelH2(-(1)/(2), z) = I*((2)/(Pi*z))^((1)/(2))* exp(- I*z) I*HankelH2[-Divide[1,2], z] == I*(Divide[2,Pi*z])^(Divide[1,2])* Exp[- I*z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.16#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\frac{1}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{1}{4}}\left(\paraW@{0}{2z^{\frac{1}{2}}}-\paraW@{0}{-2z^{\frac{1}{2}}}\right)} Error BesselJ[Divide[1,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[1,4])*(Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] )- Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), - 2*(z)^(Divide[1,2]) * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), - 2*(z)^(Divide[1,2]) * Exp[Divide[Pi*I,4]]] )) Error Failure -
Failed [7 / 7]
{Plus[Complex[0.8427727646508262, -0.04212015747529019], Times[Complex[0.4703662267003617, -0.06192488852586185], Plus[Times[0.4550898605622274, Plus[Times[Complex[0.3150667711363517, -1.1318933470332309], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.1941072423227021, 0.35884759380625464], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[1.684848183162187, 0.4798071226199044], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.8058077119758371, -1.0109338182195815], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[0.7942814592773979, 0.6544287188687908], Times[Complex[0.41086410074312574, -0.23721249916439713], Plus[Times[0.4550898605622274, Plus[Times[Complex[1.9382359752879499, -0.7976721648462198], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.22978077998995444, -0.1584303699393873], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[0.8690225748967872, 1.5500248253586082], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[2.5774777701947826, 0.910783030451775], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.16#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\frac{3}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(\paraW'@{0}{2z^{\frac{1}{2}}}-\paraW'@{0}{-2z^{\frac{1}{2}}}\right)} Error BesselJ[Divide[3,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[3,4])*((D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 2*(z)^(Divide[1,2]))- (D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> - 2*(z)^(Divide[1,2]))) Error Failure -
Failed [7 / 7]
{Plus[Complex[0.5824093961234496, 0.15854248220296385], Times[Complex[0.43831154566767444, -0.18155458676026498], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.0141669743850696, 0.548925751618472], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.3595065696883391, -0.29725176260213915], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[-0.4550898605622274, Plus[Times[Complex[0.48667094453227255, 0.3574086420945919], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.16798946016445826, 1.2035861563152026], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.0836786417162193, 0.6909849218136797], Times[Complex[0.0, -0.4744249983287943], Plus[Times[-0.4550898605622274, Plus[Times[Complex[-1.52733809531001, -0.015580244977093649], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-1.3790215645615536, -1.2403191305633965], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[-0.154282678975249, -1.0920025998149403], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.302599209723706, 0.13273628577136276], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.16#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{-\frac{3}{4}}@{z} = -2^{-\frac{1}{4}}\pi^{-\frac{1}{2}}z^{-\frac{3}{4}}\left(\paraW'@{0}{2z^{\frac{1}{2}}}+\paraW'@{0}{-2z^{\frac{1}{2}}}\right)} Error BesselJ[-Divide[3,4], z] == - (2)^(-Divide[1,4])* (Pi)^(-Divide[1,2])* (z)^(-Divide[3,4])*((D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 2*(z)^(Divide[1,2]))+ (D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> - 2*(z)^(Divide[1,2]))) Error Failure -
Failed [7 / 7]
{Plus[Complex[0.05605283808026881, -0.4145839244466886], Times[Complex[0.43831154566767444, -0.18155458676026498], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.0141669743850696, 0.548925751618472], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.3595065696883391, -0.29725176260213915], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[0.48667094453227255, 0.3574086420945919], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.16798946016445826, 1.2035861563152026], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[0.44186162583484034, -0.6708696264637843], Times[Complex[0.0, -0.4744249983287943], Plus[Times[0.4550898605622274, Plus[Times[Complex[-1.52733809531001, -0.015580244977093649], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-1.3790215645615536, -1.2403191305633965], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]], Times[0.4550898605622274, Plus[Times[Complex[-0.154282678975249, -1.0920025998149403], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.302599209723706, 0.13273628577136276], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]]]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{- iz}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{+ 2iz}} BesselJ(nu, z) = (((1)/(2)*z)^(nu)* exp(- I*z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, + 2*I*z) BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[- I*z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, + 2*I*z] Failure Successful
Failed [7 / 56]
7/56]: [[-.827986137e-1+.7317301038*I <- {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}
-.8060140108+.3257248263*I <- {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 56]
{Complex[-0.08279861346468581, 0.7317301035002939] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}
Complex[-0.8060140105131326, 0.32572482654389856] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}
10.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}e^{+ iz}}{\EulerGamma@{\nu+1}}\KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{- 2iz}} BesselJ(nu, z) = (((1)/(2)*z)^(nu)* exp(+ I*z))/(GAMMA(nu + 1))*KummerM(nu +(1)/(2), 2*nu + 1, - 2*I*z) BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu]* Exp[+ I*z],Gamma[\[Nu]+ 1]]*Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, - 2*I*z] Failure Successful
Failed [7 / 56]
7/56]: [[.827986132e-1-.7317301035*I <- {nu = -1/2, z = 1/2*3^(1/2)+1/2*I}
.8060140102-.3257248264*I <- {nu = -1/2, z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 56]
{Complex[0.08279861346468548, -0.7317301035002935] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -0.5]}
Complex[0.8060140105131325, -0.325724826543898] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -0.5]}
10.16.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{e^{-(2\nu+1)\pi i/4}}{2^{2\nu}\EulerGamma@{\nu+1}}(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{+ 2iz}} BesselJ(nu, z) = (exp(-(2*nu + 1)* Pi*I/ 4))/((2)^(2*nu)* GAMMA(nu + 1))*(2*z)^(-(1)/(2))* WhittakerM(0, nu, + 2*I*z) BesselJ[\[Nu], z] == Divide[Exp[-(2*\[Nu]+ 1)* Pi*I/ 4],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]*(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], + 2*I*z] Failure Failure
Failed [1 / 7]
1/7]: [[1.448710179-.1398527410*I <- {z = -1/2+1/2*I*3^(1/2), nu = 1/4}
Failed [1 / 7]
{Complex[1.448710178146189, -0.13985274040860685] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, Rational[1, 4]]}
10.16.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{e^{+(2\nu+1)\pi i/4}}{2^{2\nu}\EulerGamma@{\nu+1}}(2z)^{-\frac{1}{2}}\WhittakerconfhyperM{0}{\nu}@{- 2iz}} BesselJ(nu, z) = (exp(+(2*nu + 1)* Pi*I/ 4))/((2)^(2*nu)* GAMMA(nu + 1))*(2*z)^(-(1)/(2))* WhittakerM(0, nu, - 2*I*z) BesselJ[\[Nu], z] == Divide[Exp[+(2*\[Nu]+ 1)* Pi*I/ 4],(2)^(2*\[Nu])* Gamma[\[Nu]+ 1]]*(2*z)^(-Divide[1,2])* WhittakerM[0, \[Nu], - 2*I*z] Failure Failure
Failed [1 / 7]
1/7]: [[1.191860674-.595668984e-1*I <- {z = -1/2*3^(1/2)-1/2*I, nu = 1/4}
Failed [1 / 7]
{Complex[1.191860673767867, -0.059566897950845576] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[ν, Rational[1, 4]]}
10.16.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+1}}\genhyperF{0}{1}@{-}{\nu+1}{-\tfrac{1}{4}z^{2}}} BesselJ(nu, z) = (((1)/(2)*z)^(nu))/(GAMMA(nu + 1))*hypergeom([-], [nu + 1], -(1)/(4)*(z)^(2)) BesselJ[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+ 1]]*HypergeometricPFQ[{-}, {\[Nu]+ 1}, -Divide[1,4]*(z)^(2)] Error Failure - Error
10.17.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{\frac{1}{2}} = \exp@{\tfrac{1}{2}\ln@@{|z|}+\tfrac{1}{2}i\phase@@{z}}} (z)^((1)/(2)) = exp((1)/(2)*ln(abs(z))+(1)/(2)*I*argument(z)) (z)^(Divide[1,2]) == Exp[Divide[1,2]*Log[Abs[z]]+Divide[1,2]*I*Arg[z]] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.17.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scterminant{p}@{z} = \frac{e^{z}}{2\pi}\EulerGamma@{p}\incGamma@{1-p}{z}} (exp(z)/(2*Pi))*GAMMA(p)*GAMMA(1-p,z) = (exp(z))/(2*Pi)*GAMMA(p)*GAMMA(1 - p, z) Error Successful Error - -
10.18#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodM{\nu}@{x} = \left(\BesselJ{\nu}^{2}@{x}+\BesselY{\nu}^{2}@{x}\right)^{\frac{1}{2}}} Error Sqrt[KelvinBer[\[Nu], x]^2 + KelvinBei[\[Nu], x]^2] == ((BesselJ[\[Nu], x])^(2)+ (BesselY[\[Nu], x])^(2))^(Divide[1,2]) Error Failure -
Failed [30 / 30]
{Complex[0.19554332981034928, -0.3390785475644471] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.7197518351343698, 1.0182547128018542] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.18#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \HankelmodderivN{\nu}@{x} = \left(\BesselJ{\nu}'^{2}@{x}+\BesselY{\nu}'^{2}@{x}\right)^{\frac{1}{2}}} Error Sqrt[KelvinKer[\[Nu], x]^2 + KelvinKei[\[Nu], x]^2] == ((D[BesselJ[\[Nu], x], {x, 1}])^(2)+ (D[BesselY[\[Nu], x], {x, 1}])^(2))^(Divide[1,2]) Error Failure -
Failed [30 / 30]
{Complex[-0.3065654786420606, 0.09106250304027241] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.41179972752410343, -0.08651542233456301] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\deriv{\zeta}{z}\right)^{2} = \frac{1-z^{2}}{\zeta z^{2}}} (diff(zeta, z))^(2) = (1 - (z)^(2))/(zeta*(z)^(2)) (D[\[Zeta], z])^(2) == Divide[1 - (z)^(2),\[Zeta]*(z)^(2)] Failure Failure
Failed [70 / 70]
70/70]: [[.8660254030+.4999999994*I <- {z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}
.4999999994-.8660254030*I <- {z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
Failed [70 / 70]
{Complex[0.8660254037844386, 0.4999999999999999] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.4999999999999999, -0.8660254037844386] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.20.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{3}(-\zeta)^{\frac{3}{2}} = \int_{1}^{z}\frac{\sqrt{t^{2}-1}}{t}\diff{t}} (2)/(3)*(- zeta)^((3)/(2)) = int((sqrt((t)^(2)- 1))/(t), t = 1..z) Divide[2,3]*(- \[Zeta])^(Divide[3,2]) == Integrate[Divide[Sqrt[(t)^(2)- 1],t], {t, 1, z}, GenerateConditions->None] Failure Error
Failed [20 / 20]
20/20]: [[-.7483698391+.4714045210*I <- {z = 3/2, zeta = 1/2*3^(1/2)+1/2*I}
-.2769653183-.6666666667*I <- {z = 3/2, zeta = -1/2+1/2*I*3^(1/2)}
Failed [20 / 20]
{Complex[-0.7483698389729962, 0.4714045207910317] <- {Rule[z, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.27696531818196457, -0.6666666666666666] <- {Rule[z, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.20.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1}^{z}\frac{\sqrt{t^{2}-1}}{t}\diff{t} = \sqrt{z^{2}-1}-\asec@@{z}} int((sqrt((t)^(2)- 1))/(t), t = 1..z) = sqrt((z)^(2)- 1)- arcsec(z) Integrate[Divide[Sqrt[(t)^(2)- 1],t], {t, 1, z}, GenerateConditions->None] == Sqrt[(z)^(2)- 1]- ArcSec[z] Failure Error Successful [Tested: 2] Successful [Tested: 2]
10.20#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{0}(0) = 1} A[0]*(0) = 1 Subscript[A, 0]*(0) == 1 Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{1}(0) = -\tfrac{1}{225}} A[1]*(0) = -(1)/(225) Subscript[A, 1]*(0) == -Divide[1,225] Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{2}(0) = \tfrac{1\;51439}{2182\;95000}} A[2]*(0) = (151439)/(218295000) Subscript[A, 2]*(0) == Divide[151439,218295000] Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{3}(0) = -\tfrac{8872\;78009}{250\;49351\;25000}} A[3]*(0) = -(887278009)/(2504935125000) Subscript[A, 3]*(0) == -Divide[887278009,2504935125000] Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{0}(0) = \tfrac{1}{70}2^{\frac{1}{3}}} B[0]*(0) = (1)/(70)*(2)^((1)/(3)) Subscript[B, 0]*(0) == Divide[1,70]*(2)^(Divide[1,3]) Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{1}(0) = -\tfrac{1213}{10\;23750}2^{\frac{1}{3}}} B[1]*(0) = -(1213)/(1023750)*(2)^((1)/(3)) Subscript[B, 1]*(0) == -Divide[1213,1023750]*(2)^(Divide[1,3]) Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{2}(0) = \tfrac{1\;65425\;37833}{3774\;32055\;00000}2^{\frac{1}{3}}} B[2]*(0) = (16542537833)/(37743205500000)*(2)^((1)/(3)) Subscript[B, 2]*(0) == Divide[16542537833,37743205500000]*(2)^(Divide[1,3]) Skipped - no semantic math Skipped - no semantic math - -
10.20#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{3}(0) = -\tfrac{959\;71711\;84603}{25\;47666\;37125\;00000}2^{\frac{1}{3}}} B[3]*(0) = -(9597171184603)/(25476663712500000)*(2)^((1)/(3)) Subscript[B, 3]*(0) == -Divide[9597171184603,25476663712500000]*(2)^(Divide[1,3]) Skipped - no semantic math Skipped - no semantic math - -
10.20.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta = (\tfrac{3}{2})^{\frac{2}{3}}(\tau- i\pi)^{\frac{2}{3}}} zeta = ((3)/(2))^((2)/(3))*(tau - I*Pi)^((2)/(3)) \[Zeta] == (Divide[3,2])^(Divide[2,3])*(\[Tau]- I*Pi)^(Divide[2,3]) Skipped - no semantic math Skipped - no semantic math - -
10.20.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta = e^{- i\pi/3}\tau} zeta = exp(- I*Pi/ 3)*tau \[Zeta] == Exp[- I*Pi/ 3]*\[Tau] Skipped - no semantic math Skipped - no semantic math - -
10.20.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z = +(\tau\coth@@{\tau}-\tau^{2})^{\frac{1}{2}}+\iunit(\tau^{2}-\tau\tanh@@{\tau})^{\frac{1}{2}}} z = +(tau*coth(tau)- (tau)^(2))^((1)/(2))+ I*((tau)^(2)- tau*tanh(tau))^((1)/(2)) z == +(\[Tau]*Coth[\[Tau]]- \[Tau]^(2))^(Divide[1,2])+ I*(\[Tau]^(2)- \[Tau]*Tanh[\[Tau]])^(Divide[1,2]) Failure Failure
Failed [21 / 21]
21/21]: [[.8660254040-1.214547924*I <- {tau = 3/2, z = 1/2*3^(1/2)+1/2*I}
-.5000000000-.8485225201*I <- {tau = 3/2, z = -1/2+1/2*I*3^(1/2)}
Skip - No test values generated
10.20.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z = -(\tau\coth@@{\tau}-\tau^{2})^{\frac{1}{2}}-\iunit(\tau^{2}-\tau\tanh@@{\tau})^{\frac{1}{2}}} z = -(tau*coth(tau)- (tau)^(2))^((1)/(2))- I*((tau)^(2)- tau*tanh(tau))^((1)/(2)) z == -(\[Tau]*Coth[\[Tau]]- \[Tau]^(2))^(Divide[1,2])- I*(\[Tau]^(2)- \[Tau]*Tanh[\[Tau]])^(Divide[1,2]) Failure Failure
Failed [21 / 21]
21/21]: [[.8660254040+2.214547924*I <- {tau = 3/2, z = 1/2*3^(1/2)+1/2*I}
-.5000000000+2.580573328*I <- {tau = 3/2, z = -1/2+1/2*I*3^(1/2)}
Skip - No test values generated
10.21#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \rho_{\nu}(0) = 0} rho[nu]*(0) = 0 Subscript[\[Rho], \[Nu]]*(0) == 0 Skipped - no semantic math Skipped - no semantic math - -
10.21.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\rho_{\nu}^{2}\deriv{\rho_{\nu}}{t}\deriv[3]{\rho_{\nu}}{t}-3\rho_{\nu}^{2}\*\left(\deriv[2]{\rho_{\nu}}{t}\right)^{2}-4\pi^{2}\rho_{\nu}^{2}\*\left(\deriv{\rho_{\nu}}{t}\right)^{2}+(4\rho_{\nu}^{2}+1-4\nu^{2})\left(\deriv{\rho_{\nu}}{t}\right)^{4} = 0} 2*(rho[nu])^(2)*diff(rho[nu], t)*diff(rho[nu], [t$(3)])- 3*(rho[nu])^(2)*(diff(rho[nu], [t$(2)]))^(2)- 4*(Pi)^(2)* (rho[nu])^(2)*(diff(rho[nu], t))^(2)(4*rho(rho[nu])^(2)+ 1 - 4*(nu)^(2))*(diff(rho[nu], t))^(4) = 0 2*(Subscript[\[Rho], \[Nu]])^(2)*D[Subscript[\[Rho], \[Nu]], t]*D[Subscript[\[Rho], \[Nu]], {t, 3}]- 3*(Subscript[\[Rho], \[Nu]])^(2)*(D[Subscript[\[Rho], \[Nu]], {t, 2}])^(2)- 4*(Pi)^(2)* (Subscript[\[Rho], \[Nu]])^(2)*(D[Subscript[\[Rho], \[Nu]], t])^(2)(4*\[Rho](Subscript[\[Rho], \[Nu]])^(2)+ 1 - 4*\[Nu]^(2))*(D[Subscript[\[Rho], \[Nu]], t])^(4) == 0 Successful Successful - Successful [Tested: 300]
10.21.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{c}{\nu} = 2c\int_{0}^{\infty}\modBesselK{0}@{2c\sinh@@{t}}e^{-2\nu t}\diff{t}} diff(c, nu) = 2*c*int(BesselK(0, 2*c*sinh(t))*exp(- 2*nu*t), t = 0..infinity) D[c, \[Nu]] == 2*c*Integrate[BesselK[0, 2*c*Sinh[t]]*Exp[- 2*\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.21#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{0} = 1} alpha[0] = 1 Subscript[\[Alpha], 0] == 1 Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{1} = \alpha} alpha[1] = alpha Subscript[\[Alpha], 1] == \[Alpha] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{2} = \tfrac{3}{10}\alpha^{2}} alpha[2] = (3)/(10)*(alpha)^(2) Subscript[\[Alpha], 2] == Divide[3,10]*\[Alpha]^(2) Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{3} = -\tfrac{1}{350}\alpha^{3}+\tfrac{1}{70}} alpha[3] = -(1)/(350)*(alpha)^(3)+(1)/(70) Subscript[\[Alpha], 3] == -Divide[1,350]*\[Alpha]^(3)+Divide[1,70] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{4} = -\tfrac{479}{63000}\alpha^{4}-\tfrac{1}{3150}\alpha} alpha[4] = -(479)/(63000)*(alpha)^(4)-(1)/(3150)*alpha Subscript[\[Alpha], 4] == -Divide[479,63000]*\[Alpha]^(4)-Divide[1,3150]*\[Alpha] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{5} = \tfrac{20231}{80\;85000}\alpha^{5}-\tfrac{551}{1\;61700}\alpha^{2}} alpha[5] = (20231)/(8085000)*(alpha)^(5)-(551)/(161700)*(alpha)^(2) Subscript[\[Alpha], 5] == Divide[20231,8085000]*\[Alpha]^(5)-Divide[551,161700]*\[Alpha]^(2) Skipped - no semantic math Skipped - no semantic math - -
10.21.E46 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = \tfrac{1}{2}\ln@@{3}} a = (1)/(2)*ln(3) a == Divide[1,2]*Log[3] Failure Failure
Failed [6 / 6]
6/6]: [[-2.049306144 <- {a = -3/2}
.9506938555 <- {a = 3/2}
Failed [6 / 6]
{-2.049306144334055 <- {Rule[a, -1.5]}
0.9506938556659451 <- {Rule[a, 1.5]}
10.21.E46 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\ln@@{3} = 0.54931\dotsc} (1)/(2)*ln(3) = 0.54931 .. Divide[1,2]*Log[3] == 0.54931 \[Ellipsis] Error Failure Skip - symbolical successful subtest
Failed [1 / 1]
{Plus[0.5493061443340549, Times[-0.54931, …]] <- {}
10.21#Ex51 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = \frac{(m-1)\pi}{\lambda-1}} alpha = ((m - 1)* Pi)/(lambda - 1) \[Alpha] == Divide[(m - 1)* Pi,\[Lambda]- 1] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex52 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = \frac{\mu+3}{8\lambda}} p = (mu + 3)/(8*lambda) p == Divide[\[Mu]+ 3,8*\[Lambda]] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex53 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = \frac{(\mu^{2}+46\mu-63)(\lambda^{3}-1)}{6(4\lambda)^{3}(\lambda-1)}} q = (((mu)^(2)+ 46*mu - 63)*((lambda)^(3)- 1))/(6*(4*lambda)^(3)*(lambda - 1)) q == Divide[(\[Mu]^(2)+ 46*\[Mu]- 63)*(\[Lambda]^(3)- 1),6*(4*\[Lambda])^(3)*(\[Lambda]- 1)] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex54 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)(\lambda^{5}-1)}{5(4\lambda)^{5}(\lambda-1)}} r = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)*((lambda)^(5)- 1))/(5*(4*lambda)^(5)*(lambda - 1)) r == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)*(\[Lambda]^(5)- 1),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex55 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = \frac{(m-\tfrac{1}{2})\pi}{\lambda-1}} alpha = ((m -(1)/(2))* Pi)/(lambda - 1) \[Alpha] == Divide[(m -Divide[1,2])* Pi,\[Lambda]- 1] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex56 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p = \frac{(\mu+3)\lambda-(\mu-1)}{8\lambda(\lambda-1)}} p = ((mu + 3)* lambda -(mu - 1))/(8*lambda*(lambda - 1)) p == Divide[(\[Mu]+ 3)* \[Lambda]-(\[Mu]- 1),8*\[Lambda]*(\[Lambda]- 1)] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex57 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = \frac{(\mu^{2}+46\mu-63)\lambda^{3}-(\mu-1)(\mu-25)}{6(4\lambda)^{3}(\lambda-1)}} q = (((mu)^(2)+ 46*mu - 63)* (lambda)^(3)-(mu - 1)*(mu - 25))/(6*(4*lambda)^(3)*(lambda - 1)) q == Divide[(\[Mu]^(2)+ 46*\[Mu]- 63)* \[Lambda]^(3)-(\[Mu]- 1)*(\[Mu]- 25),6*(4*\[Lambda])^(3)*(\[Lambda]- 1)] Skipped - no semantic math Skipped - no semantic math - -
10.21#Ex58 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle r = \frac{(\mu^{3}+185\mu^{2}-2053\mu+1899)\lambda^{5}-(\mu-1)(\mu^{2}-114\mu+1073)}{5(4\lambda)^{5}(\lambda-1)}} r = (((mu)^(3)+ 185*(mu)^(2)- 2053*mu + 1899)* (lambda)^(5)-(mu - 1)*((mu)^(2)- 114*mu + 1073))/(5*(4*lambda)^(5)*(lambda - 1)) r == Divide[(\[Mu]^(3)+ 185*\[Mu]^(2)- 2053*\[Mu]+ 1899)* \[Lambda]^(5)-(\[Mu]- 1)*(\[Mu]^(2)- 114*\[Mu]+ 1073),5*(4*\[Lambda])^(5)*(\[Lambda]- 1)] Skipped - no semantic math Skipped - no semantic math - -
10.22.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{\nu}@{t}\diff{t} = 2\sum_{k=0}^{\infty}\BesselJ{\nu+2k+1}@{x}} int(BesselJ(nu, t), t = 0..x) = 2*sum(BesselJ(nu + 2*k + 1, x), k = 0..infinity) Integrate[BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == 2*Sum[BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [2 / 24]
2/24]: [[-.277492396 <- {nu = -1/2, x = 3/2}
-.1653166018 <- {nu = 1/2, x = 3/2}
Skipped - Because timed out
10.22.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{2n}@{t}\diff{t} = \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t}} int(BesselJ(2*n, t), t = 0..x) = int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1), int(BesselJ(2*n + 1, t), t = 0..x) Integrate[BesselJ[2*n, t], {t, 0, x}, GenerateConditions->None] == Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None], Integrate[BesselJ[2*n + 1, t], {t, 0, x}, GenerateConditions->None] Failure Failure Error Error
10.22.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{0}@{t}\diff{t}-2\sum_{k=0}^{n-1}\BesselJ{2k+1}@{x},\quad\int_{0}^{x}\BesselJ{2n+1}@{t}\diff{t} = 1-\BesselJ{0}@{x}-2\sum_{k=1}^{n}\BesselJ{2k}@{x}} int(BesselJ(0, t), t = 0..x)- 2*sum(BesselJ(2*k + 1, x), k = 0..n - 1), int(BesselJ(2*n + 1, t), t = 0..x) = 1 - BesselJ(0, x)- 2*sum(BesselJ(2*k, x), k = 1..n) Integrate[BesselJ[0, t], {t, 0, x}, GenerateConditions->None]- 2*Sum[BesselJ[2*k + 1, x], {k, 0, n - 1}, GenerateConditions->None], Integrate[BesselJ[2*n + 1, t], {t, 0, x}, GenerateConditions->None] == 1 - BesselJ[0, x]- 2*Sum[BesselJ[2*k, x], {k, 1, n}, GenerateConditions->None] Failure Failure Error Error
10.22.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = x^{\mu}\frac{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(\nu+2k+1)\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}+k}}{\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}+k}}\BesselJ{\nu+2k+1}@{x}} int((t)^(mu)* BesselJ(nu, t), t = 0..x) = (x)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))* sum(((nu + 2*k + 1)* GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)+ k))/(GAMMA((1)/(2)*nu +(1)/(2)*mu +(3)/(2)+ k))*BesselJ(nu + 2*k + 1, x), k = 0..infinity) Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (x)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]* Sum[Divide[(\[Nu]+ 2*k + 1)* Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]+ k],Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]+ k]]*BesselJ[\[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None] Error Failure - Skipped - Because timed out
10.22.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \frac{1}{2}\sum_{k=1}^{\infty}\frac{\digamma@{k+1}-\digamma@{1}}{k!}(\tfrac{1}{2}x)^{k}\BesselJ{k}@{x}} int((1 - BesselJ(0, t))/(t), t = 0..x) = (1)/(2)*sum((Psi(k + 1)- Psi(1))/(factorial(k))*((1)/(2)*x)^(k)* BesselJ(k, x), k = 1..infinity) Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*Sum[Divide[PolyGamma[k + 1]- PolyGamma[1],(k)!]*(Divide[1,2]*x)^(k)* BesselJ[k, x], {k, 1, Infinity}, GenerateConditions->None] Error Failure Successful [Tested: 3]
Failed [3 / 3]
{Plus[0.2622772441151432, Times[-0.5, NSum[Times[Power[0.75, k], BesselJ[k, 1.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 1.5]}
Plus[0.03100698635091531, Times[-0.5, NSum[Times[Power[0.25, k], BesselJ[k, 0.5], Power[Factorial[k], -1], Plus[EulerGamma, PolyGamma[0, Plus[1, k]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[x, 0.5]}
10.22.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = 2\sum_{k=0}^{\infty}(2k+3)(\digamma@{k+2}-\digamma@{1})\BesselJ{2k+3}@{x}} x*int((1 - BesselJ(0, t))/(t), t = 0..x) = 2*sum((2*k + 3)*(Psi(k + 2)- Psi(1))* BesselJ(2*k + 3, x), k = 0..infinity) x*Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(2*k + 3)*(PolyGamma[k + 2]- PolyGamma[1])* BesselJ[2*k + 3, x], {k, 0, Infinity}, GenerateConditions->None] Failure Error Successful [Tested: 3] Skipped - Because timed out
10.22.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}} int(BesselJ(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(nu + mu, z)*BesselJ(nu - mu, z) Integrate[BesselJ[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z] Failure Failure - Skipped - Because timed out
10.22.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \pi\cos@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}} int(BesselJ(2*nu, 2*z*sin(theta))*cos(2*mu*theta), theta = 0..Pi) = Pi*cos(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z) Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Cos[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z] Failure Failure - Skipped - Because timed out
10.22.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\pi}\BesselJ{2\nu}@{2z\sin@@{\theta}}\sin@{2\mu\theta}\diff{\theta} = \pi\sin@{\mu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}} int(BesselJ(2*nu, 2*z*sin(theta))*sin(2*mu*theta), theta = 0..Pi) = Pi*sin(mu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z) Integrate[BesselJ[2*\[Nu], 2*z*Sin[\[Theta]]]*Sin[2*\[Mu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] == Pi*Sin[\[Mu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z] Failure Failure - Skipped - Because timed out
10.22.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}^{2}@{z}} int(BesselJ(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*(BesselJ(n, z))^(2) Integrate[BesselJ[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*(BesselJ[n, z])^(2) Failure Failure Successful [Tested: 7] Successful [Tested: 7]
10.22.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselY{2\nu}@{2z\cos@@{\theta}}\cos@{2\mu\theta}\diff{\theta} = \tfrac{1}{2}\pi\cot@{2\nu\pi}\BesselJ{\nu+\mu}@{z}\BesselJ{\nu-\mu}@{z}-\tfrac{1}{2}\pi\csc@{2\nu\pi}\BesselJ{\mu-\nu}@{z}\BesselJ{-\mu-\nu}@{z}} int(BesselY(2*nu, 2*z*cos(theta))*cos(2*mu*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*cot(2*nu*Pi)*BesselJ(nu + mu, z)*BesselJ(nu - mu, z)-(1)/(2)*Pi*csc(2*nu*Pi)*BesselJ(mu - nu, z)*BesselJ(- mu - nu, z) Integrate[BesselY[2*\[Nu], 2*z*Cos[\[Theta]]]*Cos[2*\[Mu]*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*Cot[2*\[Nu]*Pi]*BesselJ[\[Nu]+ \[Mu], z]*BesselJ[\[Nu]- \[Mu], z]-Divide[1,2]*Pi*Csc[2*\[Nu]*Pi]*BesselJ[\[Mu]- \[Nu], z]*BesselJ[- \[Mu]- \[Nu], z] Failure Failure Error Skip - No test values generated
10.22.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselY{0}@{2z\sin@@{\theta}}\cos@{2n\theta}\diff{\theta} = \tfrac{1}{2}\pi\BesselJ{n}@{z}\BesselY{n}@{z}} int(BesselY(0, 2*z*sin(theta))*cos(2*n*theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*Pi*BesselJ(n, z)*BesselY(n, z) Integrate[BesselY[0, 2*z*Sin[\[Theta]]]*Cos[2*n*\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*Pi*BesselJ[n, z]*BesselY[n, z] Failure Failure Successful [Tested: 7] Skipped - Because timed out
10.22.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu+1}(\cos@@{\theta})^{2\nu+1}\diff{\theta} = 2^{\nu}\EulerGamma@{\nu+1}z^{-\nu-1}\BesselJ{\mu+\nu+1}@{z}} int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu + 1)*(cos(theta))^(2*nu + 1), theta = 0..(1)/(2)*Pi) = (2)^(nu)* GAMMA(nu + 1)*(z)^(- nu - 1)* BesselJ(mu + nu + 1, z) Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^(\[Mu]+ 1)*(Cos[\[Theta]])^(2*\[Nu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (2)^\[Nu]* Gamma[\[Nu]+ 1]*(z)^(- \[Nu]- 1)* BesselJ[\[Mu]+ \[Nu]+ 1, z] Successful Error - Successful [Tested: 300]
10.22.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}^{2}@{\tfrac{1}{2}z}} int(BesselJ(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*(BesselJ(mu, (1)/(2)*z))^(2) Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*(BesselJ[\[Mu], Divide[1,2]*z])^(2) Successful Error - Successful [Tested: 35]
10.22.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselY{\mu}@{z\sin@@{\theta}}(\sin@@{\theta})^{\mu}(\cos@@{\theta})^{2\mu}\diff{\theta} = \pi^{\frac{1}{2}}2^{\mu-1}z^{-\mu}\*\EulerGamma@{\mu+\tfrac{1}{2}}\BesselJ{\mu}@{\tfrac{1}{2}z}\BesselY{\mu}@{\tfrac{1}{2}z}} int(BesselY(mu, z*sin(theta))*(sin(theta))^(mu)*(cos(theta))^(2*mu), theta = 0..(1)/(2)*Pi) = (Pi)^((1)/(2))* (2)^(mu - 1)* (z)^(- mu)* GAMMA(mu +(1)/(2))*BesselJ(mu, (1)/(2)*z)*BesselY(mu, (1)/(2)*z) Integrate[BesselY[\[Mu], z*Sin[\[Theta]]]*(Sin[\[Theta]])^\[Mu]*(Cos[\[Theta]])^(2*\[Mu]), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == (Pi)^(Divide[1,2])* (2)^(\[Mu]- 1)* (z)^(- \[Mu])* Gamma[\[Mu]+Divide[1,2]]*BesselJ[\[Mu], Divide[1,2]*z]*BesselY[\[Mu], Divide[1,2]*z] Successful Error - Skipped - Because timed out
10.22.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}(\sin@@{\theta})^{2\alpha-1}\sec@@{\theta}\diff{\theta} = \frac{(\mu+\nu+\alpha)\EulerGamma@{\mu+\alpha}2^{\alpha-1}}{\nu\EulerGamma@{\mu+1}z^{\alpha}}\BesselJ{\mu+\nu+\alpha}@{z}} int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*(sin(theta))^(2*alpha - 1)* sec(theta), theta = 0..(1)/(2)*Pi) = ((mu + nu + alpha)* GAMMA(mu + alpha)*(2)^(alpha - 1))/(nu*GAMMA(mu + 1)*(z)^(alpha))*BesselJ(mu + nu + alpha, z) Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*(Sin[\[Theta]])^(2*\[Alpha]- 1)* Sec[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu]+ \[Alpha])* Gamma[\[Mu]+ \[Alpha]]*(2)^(\[Alpha]- 1),\[Nu]*Gamma[\[Mu]+ 1]*(z)^\[Alpha]]*BesselJ[\[Mu]+ \[Nu]+ \[Alpha], z] Failure Error Skipped - Because timed out Skipped - Because timed out
10.22.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin^{2}@@{\theta}}\BesselJ{\nu}@{z\cos^{2}@@{\theta}}\cot@@{\theta}\diff{\theta} = \tfrac{1}{2}\mu^{-1}\BesselJ{\mu+\nu}@{z}} int(BesselJ(mu, z*(sin(theta))^(2))*BesselJ(nu, z*(cos(theta))^(2))*cot(theta), theta = 0..(1)/(2)*Pi) = (1)/(2)*(mu)^(- 1)* BesselJ(mu + nu, z) Integrate[BesselJ[\[Mu], z*(Sin[\[Theta]])^(2)]*BesselJ[\[Nu], z*(Cos[\[Theta]])^(2)]*Cot[\[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[1,2]*\[Mu]^(- 1)* BesselJ[\[Mu]+ \[Nu], z] Failure Error Skipped - Because timed out Skip - No test values generated
10.22.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\frac{1}{2}\pi}\BesselJ{\mu}@{z\sin@@{\theta}}\modBesselI{\nu}@{z\cos@@{\theta}}(\tan@@{\theta})^{\mu+1}\diff{\theta} = \frac{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}(\tfrac{1}{2}z)^{\mu}}{2\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}}\BesselJ{\nu}@{z}} int(BesselJ(mu, z*sin(theta))*BesselI(nu, z*cos(theta))*(tan(theta))^(mu + 1), theta = 0..(1)/(2)*Pi) = (GAMMA((1)/(2)*nu -(1)/(2)*mu)*((1)/(2)*z)^(mu))/(2*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))*BesselJ(nu, z) Integrate[BesselJ[\[Mu], z*Sin[\[Theta]]]*BesselI[\[Nu], z*Cos[\[Theta]]]*(Tan[\[Theta]])^(\[Mu]+ 1), {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]*(Divide[1,2]*z)^\[Mu],2*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]*BesselJ[\[Nu], z] Failure Error Skipped - Because timed out Skipped - Because timed out
10.22.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t\BesselJ{\nu-1}^{2}@{t}\diff{t} = 2\sum_{k=0}^{\infty}(\nu+2k)\BesselJ{\nu+2k}^{2}@{x}} int(t*(BesselJ(nu - 1, t))^(2), t = 0..x) = 2*sum((nu + 2*k)* (BesselJ(nu + 2*k, x))^(2), k = 0..infinity) Integrate[t*(BesselJ[\[Nu]- 1, t])^(2), {t, 0, x}, GenerateConditions->None] == 2*Sum[(\[Nu]+ 2*k)* (BesselJ[\[Nu]+ 2*k, x])^(2), {k, 0, Infinity}, GenerateConditions->None] Failure Successful Successful [Tested: 15] Successful [Tested: 15]
10.22.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t\left(\BesselJ{\nu-1}^{2}@{t}-\BesselJ{\nu+1}^{2}@{t}\right)\diff{t} = 2\nu\BesselJ{\nu}^{2}@{x}} int(t*((BesselJ(nu - 1, t))^(2)- (BesselJ(nu + 1, t))^(2)), t = 0..x) = 2*nu*(BesselJ(nu, x))^(2) Integrate[t*((BesselJ[\[Nu]- 1, t])^(2)- (BesselJ[\[Nu]+ 1, t])^(2)), {t, 0, x}, GenerateConditions->None] == 2*\[Nu]*(BesselJ[\[Nu], x])^(2) Successful Successful - Successful [Tested: 15]
10.22.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t\BesselJ{0}^{2}@{t}\diff{t} = \tfrac{1}{2}x^{2}\left(\BesselJ{0}^{2}@{x}+\BesselJ{1}^{2}@{x}\right)} int(t*(BesselJ(0, t))^(2), t = 0..x) = (1)/(2)*(x)^(2)*((BesselJ(0, x))^(2)+ (BesselJ(1, x))^(2)) Integrate[t*(BesselJ[0, t])^(2), {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(x)^(2)*((BesselJ[0, x])^(2)+ (BesselJ[1, x])^(2)) Successful Successful - Successful [Tested: 3]
10.22.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{n}@{t}\BesselJ{n+1}@{t}\diff{t} = \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x}} int(BesselJ(n, t)*BesselJ(n + 1, t), t = 0..x) = (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) Integrate[BesselJ[n, t]*BesselJ[n + 1, t], {t, 0, x}, GenerateConditions->None] == Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] Failure Error Successful [Tested: 3]
Failed [2 / 3]
{Plus[-0.6308420033135872, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 1.5]}
Plus[-0.9403627636501156, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]], {Rule[n, 3], Rule[x, 0.5]}
10.22.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\left(1-\BesselJ{0}^{2}@{x}\right)-\sum_{k=1}^{n}\BesselJ{k}^{2}@{x} = \sum_{k=n+1}^{\infty}\BesselJ{k}^{2}@{x}} (1)/(2)*(1 - (BesselJ(0, x))^(2))- sum((BesselJ(k, x))^(2), k = 1..n) = sum((BesselJ(k, x))^(2), k = n + 1..infinity) Divide[1,2]*(1 - (BesselJ[0, x])^(2))- Sum[(BesselJ[k, x])^(2), {k, 1, n}, GenerateConditions->None] == Sum[(BesselJ[k, x])^(2), {k, n + 1, Infinity}, GenerateConditions->None] Failure Failure Successful [Tested: 3]
Failed [3 / 3]
{Plus[0.6309837827773054, Times[-1.0, NSum[Power[BesselJ[k, 1.5], 2] <- {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[1.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[1.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[1.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[1.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[1.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 1.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 1.5], 2], Power[BesselJ[1, 1.5], 2], Times[Power[1.5, -2], Power[Plus[Times[-1, 1.5, BesselJ[0, 1.5]], Times[2, BesselJ[1, 1.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 1.5]}
Plus[0.9403627895513045, Times[-1.0, NSum[Power[BesselJ[k, 0.5], 2] <- {k, 4, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[-1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[2, ], Power[0.5, 2], []], Times[Plus[-8, Times[-20, ], Times[-16, Power[, 2]], Times[-4, Power[, 3]], Times[-1, Power[0.5, 2]]], [Plus[1, ]]], Times[Plus[3, Times[2, ]], Plus[8, Times[12, ], Times[4, Power[, 2]], Times[-1, Power[0.5, 2]]], [Plus[2, ]]], Times[Plus[-16, Times[-32, ], Times[-20, Power[, 2]], Times[-4, Power[, 3]], Power[0.5, 2]], [Plus[3, ]]], Times[Plus[1, ], Power[0.5, 2], [Plus[4, ]]]], 0], Equal[[0], 0], Equal[[1], Power[BesselJ[0, 0.5], 2]], Equal[[2], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2]]], Equal[[3], Plus[Power[BesselJ[0, 0.5], 2], Power[BesselJ[1, 0.5], 2], Times[Power[0.5, -2], Power[Plus[Times[-1, 0.5, BesselJ[0, 0.5]], Times[2, BesselJ[1, 0.5]]], 2]]]]}]][4.0]]], {Rule[n, 3], Rule[x, 0.5]}
10.22.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{\mu+\nu+2k+1}@{x}} int(BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = 2*sum((- 1)^(k)* BesselJ(mu + nu + 2*k + 1, x), k = 0..infinity) Integrate[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* BesselJ[\[Mu]+ \[Nu]+ 2*k + 1, x], {k, 0, Infinity}, GenerateConditions->None] Error Failure - Skip - No test values generated
10.22.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{1-\nu}@{x-t}\diff{t} = \BesselJ{0}@{x}-\cos@@{x}} int(BesselJ(nu, t)*BesselJ(1 - nu, x - t), t = 0..x) = BesselJ(0, x)- cos(x) Integrate[BesselJ[\[Nu], t]*BesselJ[1 - \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == BesselJ[0, x]- Cos[x] Failure Failure - Skipped - Because timed out
10.22.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\BesselJ{\nu}@{t}\BesselJ{-\nu}@{x-t}\diff{t} = \sin@@{x}} int(BesselJ(nu, t)*BesselJ(- nu, x - t), t = 0..x) = sin(x) Integrate[BesselJ[\[Nu], t]*BesselJ[- \[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Sin[x] Failure Failure - Skipped - Because timed out
10.22.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t^{-1}\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t} = \frac{\BesselJ{\mu+\nu}@{x}}{\mu}} int((t)^(- 1)* BesselJ(mu, t)*BesselJ(nu, x - t), t = 0..x) = (BesselJ(mu + nu, x))/(mu) Integrate[(t)^(- 1)* BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t], {t, 0, x}, GenerateConditions->None] == Divide[BesselJ[\[Mu]+ \[Nu], x],\[Mu]] Failure Failure - Skip - No test values generated
10.22.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{\BesselJ{\mu}@{t}\BesselJ{\nu}@{x-t}\diff{t}}{t(x-t)} = \frac{(\mu+\nu)\BesselJ{\mu+\nu}@{x}}{\mu\nu x}} int((BesselJ(mu, t)*BesselJ(nu, x - t))/(t*(x - t)), t = 0..x) = ((mu + nu)* BesselJ(mu + nu, x))/(mu*nu*x) Integrate[Divide[BesselJ[\[Mu], t]*BesselJ[\[Nu], x - t],t*(x - t)], {t, 0, x}, GenerateConditions->None] == Divide[(\[Mu]+ \[Nu])* BesselJ[\[Mu]+ \[Nu], x],\[Mu]*\[Nu]*x] Error Failure - Skip - No test values generated
10.22.E36 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{\alpha}}\int_{0}^{x}(x-t)^{\alpha-1}\BesselJ{\nu}@{t}\diff{t} = 2^{\alpha}\sum_{k=0}^{\infty}\frac{(\alpha)_{k}}{k!}\BesselJ{\nu+\alpha+2k}@{x}} (1)/(GAMMA(alpha))*int((x - t)^(alpha - 1)* BesselJ(nu, t), t = 0..x) = (2)^(alpha)* sum((alpha[k])/(factorial(k))*BesselJ(nu + alpha + 2*k, x), k = 0..infinity) Divide[1,Gamma[\[Alpha]]]*Integrate[(x - t)^(\[Alpha]- 1)* BesselJ[\[Nu], t], {t, 0, x}, GenerateConditions->None] == (2)^\[Alpha]* Sum[Divide[Subscript[\[Alpha], k],(k)!]*BesselJ[\[Nu]+ \[Alpha]+ 2*k, x], {k, 0, Infinity}, GenerateConditions->None] Error Failure - Skip - No test values generated
10.22.E37 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t\BesselJ{\nu}@{j_{\nu,\ell}t}\BesselJ{\nu}@{j_{\nu,m}t}\diff{t} = \tfrac{1}{2}\left(\BesselJ{\nu}'@{j_{\nu,\ell}}\right)^{2}\Kroneckerdelta{\ell}{m}} int(t*BesselJ(nu, j[nu , ell]*t)*BesselJ(nu, j[nu , m]*t), t = 0..1) = (1)/(2)*(diff( BesselJ(nu, j[nu , ell]), j[nu , ell]$(1) ))^(2)* KroneckerDelta[ell, m] Integrate[t*BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[j, \[Nu], m]*t], {t, 0, 1}, GenerateConditions->None] == Divide[1,2]*(D[BesselJ[\[Nu], Subscript[j, \[Nu], \[ScriptL]]], {Subscript[j, \[Nu], \[ScriptL]], 1}])^(2)* KroneckerDelta[\[ScriptL], m] Failure Failure Error
Failed [300 / 300]
{Indeterminate <- {Rule[m, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Indeterminate <- {Rule[m, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[j, ν, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.22.E38 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}t\BesselJ{\nu}@{\alpha_{\ell}t}\BesselJ{\nu}@{\alpha_{m}t}\diff{t} = \left(\frac{a^{2}}{b^{2}}+\alpha_{\ell}^{2}-\nu^{2}\right)\frac{(\BesselJ{\nu}@{\alpha_{\ell}})^{2}}{2\alpha_{\ell}^{2}}\Kroneckerdelta{\ell}{m}} int(t*BesselJ(nu, alpha[ell]*t)*BesselJ(nu, alpha[m]*t), t = 0..1) ((BesselJ(nu, alpha[ell]))^(2))/(2*alpha(alpha[ell])^(2))*KroneckerDelta[ell, m] Integrate[t*BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]*t]*BesselJ[\[Nu], Subscript[\[Alpha], m]*t], {t, 0, 1}, GenerateConditions->None] Divide[(BesselJ[\[Nu], Subscript[\[Alpha], \[ScriptL]]])^(2),2*\[Alpha](Subscript[\[Alpha], \[ScriptL]])^(2)]*KroneckerDelta[\[ScriptL], m] Failure Failure Error
Failed [300 / 300]
{Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 1], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Indeterminate <- {Rule[a, -1.5], Rule[b, -1.5], Rule[m, 2], Rule[α, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, m], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[α, ℓ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.22.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{\BesselJ{0}@{t}}{t}\diff{t}+\EulerConstant+\ln@{\tfrac{1}{2}x} = \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t}} int((BesselJ(0, t))/(t), t = x..infinity)+ gamma + ln((1)/(2)*x) = int((1 - BesselJ(0, t))/(t), t = 0..x) Integrate[Divide[BesselJ[0, t],t], {t, x, Infinity}, GenerateConditions->None]+ EulerGamma + Log[Divide[1,2]*x] == Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] Successful Successful - Successful [Tested: 3]
10.22.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\frac{1-\BesselJ{0}@{t}}{t}\diff{t} = \sum_{k=1}^{\infty}(-1)^{k-1}\frac{(\frac{1}{2}x)^{2k}}{2k(k!)^{2}}} int((1 - BesselJ(0, t))/(t), t = 0..x) = sum((- 1)^(k - 1)*(((1)/(2)*x)^(2*k))/(2*k*(factorial(k))^(2)), k = 1..infinity) Integrate[Divide[1 - BesselJ[0, t],t], {t, 0, x}, GenerateConditions->None] == Sum[(- 1)^(k - 1)*Divide[(Divide[1,2]*x)^(2*k),2*k*((k)!)^(2)], {k, 1, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 3]
10.22.E41 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselJ{\nu}@{t}\diff{t} = 1} int(BesselJ(nu, t), t = 0..infinity) = 1 Integrate[BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == 1 Successful Successful - Successful [Tested: 8]
10.22.E42 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\BesselY{\nu}@{t}\diff{t} = -\tan@{\tfrac{1}{2}\nu\pi}} int(BesselY(nu, t), t = 0..infinity) = - tan((1)/(2)*nu*Pi) Integrate[BesselY[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Tan[Divide[1,2]*\[Nu]*Pi] Successful Error - Successful [Tested: 6]
10.22.E43 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\mu}\BesselJ{\nu}@{t}\diff{t} = 2^{\mu}\frac{\EulerGamma@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}}} int((t)^(mu)* BesselJ(nu, t), t = 0..infinity) = (2)^(mu)*(GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2))) Integrate[(t)^\[Mu]* BesselJ[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == (2)^\[Mu]*Divide[Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]] Successful Successful - Successful [Tested: 10]
10.22.E55 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{-1}\BesselJ{\nu+2\ell+1}@{t}\BesselJ{\nu+2m+1}@{t}\diff{t} = \frac{\Kroneckerdelta{\ell}{m}}{2(2\ell+\nu+1)}} int((t)^(- 1)* BesselJ(nu + 2*ell + 1, t)*BesselJ(nu + 2*m + 1, t), t = 0..infinity) = (KroneckerDelta[ell, m])/(2*(2*ell + nu + 1)) Integrate[(t)^(- 1)* BesselJ[\[Nu]+ 2*\[ScriptL]+ 1, t]*BesselJ[\[Nu]+ 2*m + 1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[KroneckerDelta[\[ScriptL], m],2*(2*\[ScriptL]+ \[Nu]+ 1)] Failure Failure Error
Failed [30 / 30]
{Plus[Times[-0.5, Power[Plus[Complex[1.8660254037844388, 0.49999999999999994], Times[2.0, ℓ]], -1], KroneckerDelta[1.0, ℓ]], Times[0.15915494309189535, Power[Plus[1.0, Times[-1.0, ℓ]], -1], Power[Plus[Complex[2.866025403784439, 0.49999999999999994], ℓ], -1], Sin[Times[3.141592653589793, Plus[1.0, Times[-1.0, ℓ]]]]]] <- {Rule[m, 1], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Times[-0.5, Power[Plus[Complex[1.8660254037844388, 0.49999999999999994], Times[2.0, ℓ]], -1], KroneckerDelta[2.0, ℓ]], Times[0.15915494309189535, Power[Plus[2.0, Times[-1.0, ℓ]], -1], Power[Plus[Complex[3.866025403784439, 0.49999999999999994], ℓ], -1], Sin[Times[3.141592653589793, Plus[2.0, Times[-1.0, ℓ]]]]]] <- {Rule[m, 2], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.23.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1} (BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1 (BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1 Error Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0} sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z), k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0 Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z], {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0 Error Failure -
Failed [21 / 21]
{Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.23.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}} sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z) Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z] Error Failure Skipped - Because timed out
Failed [21 / 21]
{Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]] <- {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.23#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}} w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha)) w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]] Failure Failure
Failed [300 / 300]
300/300]: [[-.3146075610-.1816387601*I <- {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}
-1.680632965+.1843866439*I <- {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[-0.3146075609842255, -0.18163876002333418] <- {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}
Complex[0.4375091763619045, 0.252596040745477] <- {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}
10.23#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u-v\cos@@{\alpha} = w\cos@@{\chi}} u - v*cos(alpha) = w*cos(chi) u - v*Cos[\[Alpha]] == w*Cos[\[Chi]] Failure Failure
Failed [300 / 300]
300/300]: [[-.263783978e-1+.4431282844*I <- {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}
.8262683052-.3665121890*I <- {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[-0.026378398027867456, 0.44312828415668515] <- {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.023973249213014358, -0.5554825514041751] <- {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.23#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v\sin@@{\alpha} = w\sin@@{\chi}} v*sin(alpha) = w*sin(chi) v*Sin[\[Alpha]] == w*Sin[\[Chi]] Failure Failure
Failed [300 / 300]
300/300]: [[.2887554391-.2231097873*I <- {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}
1.585713279-.763530664e-1*I <- {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}
Failed [294 / 300]
{Complex[0.2887554393029954, -0.22310978722682606] <- {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.8740447527972026, 0.09051196331992012] <- {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.23.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}} exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)* (I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity) Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)* (I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None] Error Failure Skipped - Because timed out Skipped - Because timed out
10.23.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}} ((1)/(2)*z)^(nu) = sum(((nu + 2*k)* GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity) (Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)* Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None] Error Successful Skipped - Because timed out Successful [Tested: 7]
10.23.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}} BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)* BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity) BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)* BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None] Error Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}} BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))* BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)* BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity) BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])* BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)* BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None] Error Failure -
Failed [16 / 21]
{Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[Plus[-1, 1], -1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][1.0]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, } <- {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
10.24.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}+(x^{2}+\nu^{2})w = 0} (x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)+((x)^(2)+ (nu)^(2))* w = 0 (x)^(2)* D[w, {x, 2}]+ x*D[w, x]+((x)^(2)+ \[Nu]^(2))* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[1.948557159+2.125000000*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
.2165063513+1.125000001*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
Failed [300 / 300]
{Complex[1.9485571585149875, 2.125] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.948557158514987, 0.12499999999999989] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.24#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselJ{i\nu}@{x}}} sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselJ(I*nu, x)) Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselJ[I*\[Nu], x]] Successful Successful - Successful [Tested: 30]
10.24#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{\nu}@{x} = \sech@{\tfrac{1}{2}\pi\nu}\realpart@{\BesselY{i\nu}@{x}}} sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) = sech((1)/(2)*Pi*nu)*Re(BesselY(I*nu, x)) Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] == Sech[Divide[1,2]*Pi*\[Nu]]*Re[BesselY[I*\[Nu], x]] Successful Successful - Successful [Tested: 30]
10.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{1+i\nu} = \left(\frac{\pi\nu}{\sinh@{\pi\nu}}\right)^{\frac{1}{2}}e^{i\gamma_{\nu}}} GAMMA(1 + I*nu) = ((Pi*nu)/(sinh(Pi*nu)))^((1)/(2))* exp(I*gamma[nu]) Gamma[1 + I*\[Nu]] == (Divide[Pi*\[Nu],Sinh[Pi*\[Nu]]])^(Divide[1,2])* Exp[I*Subscript[\[Gamma], \[Nu]]] Failure Failure
Failed [300 / 300]
300/300]: [[.131682196e-1-.6479738907*I <- {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = 1/2*3^(1/2)+1/2*I}
.2393622021-.2867640040*I <- {gamma = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, gamma[nu] = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.013168219691258531, -0.6479738909120968] <- {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.23936220222535412, -0.28676400411697583] <- {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[γ, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.24#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselJimag{-\nu}@{x} = \BesselJimag{\nu}@{x}} sech((1/2)*Pi*(- nu))*Re(BesselJ(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)) Sech[1/2 Pi - \[Nu]] Re[BesselJ[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]] Failure Failure
Failed [12 / 30]
12/30]: [[.1765981285-.1547836875*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
-1.059084556+.9282601935*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
Failed [30 / 30]
{Complex[-0.6353785354467336, 0.04153700144653363] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.2910880978413849, 0.681683596996288] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.24#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{-\nu}@{x} = \BesselYimag{\nu}@{x}} sech((1/2)*Pi*(- nu))*Re(BesselY(I*(- nu), x)) = sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)) Sech[1/2 Pi - \[Nu]] Re[BesselY[I - \[Nu], x]] == Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]] Failure Failure
Failed [12 / 30]
12/30]: [[-.6730010946+.5898680353*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
-.1980888923+.1736197856*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
Failed [30 / 30]
{Complex[0.16541121369118172, 0.7534126929509344] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.3242468905843751, -0.9796849117084342] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.24.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\BesselJimag{\nu}@{x},\BesselYimag{\nu}@{x}} = 2/(\pi x)} (sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)))*diff(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x)), x)-diff(sech((1/2)*Pi*(nu))*Re(BesselJ(I*(nu), x)), x)*(sech((1/2)*Pi*(nu))*Re(BesselY(I*(nu), x))) = 2/(Pi*x) Wronskian[{Sech[1/2 Pi \[Nu]] Re[BesselJ[I \[Nu], x]], Sech[1/2 Pi \[Nu]] Re[BesselY[I \[Nu], x]]}, x] == 2/(Pi*x) Failure Failure
Failed [12 / 30]
12/30]: [[-.3214564733-.7786157192*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 3/2}
-.6431025084-4.765445687*I <- {nu = 1/2*3^(1/2)+1/2*I, x = 1/2}
Failed [30 / 30]
{Plus[-0.4244131815783876, Times[Complex[0.017184424665049866, -0.12995814793225188], Plus[Times[Complex[5.94457417937745, -0.08806734388290616], Derivative[1][Re][Complex[0.5424102683642863, 1.3820413572565333]]], Times[Complex[0.04670634387761448, 2.0064149502593187], Derivative[1][Re][Complex[1.5013396639532606, -0.5145465005058608]]]]]] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[-0.4244131815783876, Times[Complex[-0.5062208144169521, 0.3689208146583662], Plus[Times[Complex[1.2690034139339206, -1.428145592425075], Derivative[1][Re][Complex[-0.5230512553281585, -0.7250724679588263]]], Times[Complex[0.9907135967899046, 0.5862869255257461], Derivative[1][Re][Complex[0.9118063408652576, -0.381897212811936]]]]]] <- {Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.24.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselYimag{0}@{x} = \BesselY{0}@{x}} sech((1/2)*Pi*(0))*Re(BesselY(I*(0), x)) = BesselY(0, x) Sech[1/2 Pi 0] Re[BesselY[I 0, x]] == BesselY[0, x] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
10.25.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{2}\deriv[2]{w}{z}+z\deriv{w}{z}-(z^{2}+\nu^{2})w = 0} (z)^(2)* diff(w, [z$(2)])+ z*diff(w, z)-((z)^(2)+ (nu)^(2))* w = 0 (z)^(2)* D[w, {z, 2}]+ z*D[w, z]-((z)^(2)+ \[Nu]^(2))* w == 0 Failure Failure
Failed [220 / 300]
220/300]: [[-.6467477718e-9-2.000000002*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
-.8660254040e-9-2.000000001*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}
Failed [264 / 300]
{Complex[0.0, -2.0] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.0, -2.0] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
10.25.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = (\tfrac{1}{2}z)^{\nu}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}}} BesselI(nu, z) = ((1)/(2)*z)^(nu)* sum((((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)), k = 0..infinity) BesselI[\[Nu], z] == (Divide[1,2]*z)^\[Nu]* Sum[Divide[(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 70]
10.27.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-n}@{z} = \modBesselI{n}@{z}} BesselI(- n, z) = BesselI(n, z) BesselI[- n, z] == BesselI[n, z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.27.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}} BesselI(- nu, z) = BesselI(nu, z)+(2/ Pi)* sin(nu*Pi)*BesselK(nu, z) BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/ Pi)* Sin[\[Nu]*Pi]*BesselK[\[Nu], z] Successful Successful - Successful [Tested: 70]
10.27.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}} BesselK(- nu, z) = BesselK(nu, z) BesselK[- \[Nu], z] == BesselK[\[Nu], z] Successful Successful - Successful [Tested: 70]
10.27.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}} BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi)) BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]] Successful Successful -
Failed [14 / 70]
{Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Indeterminate <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
10.27.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}} BesselI(nu, z) = exp(- nu*Pi*I/ 2)*BesselJ(nu, z*exp(+ Pi*I/ 2)) BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/ 2]*BesselJ[\[Nu], z*Exp[+ Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}} BesselI(nu, z) = exp(+ nu*Pi*I/ 2)*BesselJ(nu, z*exp(- Pi*I/ 2)) BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/ 2]*BesselJ[\[Nu], z*Exp[- Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)} BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/ 2)*(HankelH1(nu, z*exp(+ Pi*I/ 2))+ HankelH2(nu, z*exp(+ Pi*I/ 2))) BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/ 2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/ 2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/ 2]]) Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)} BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/ 2)*(HankelH1(nu, z*exp(- Pi*I/ 2))+ HankelH2(nu, z*exp(- Pi*I/ 2))) BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/ 2]*(HankelH1[\[Nu], z*Exp[- Pi*I/ 2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/ 2]]) Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}} Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/ 2)*BesselK(nu, z*exp(- Pi*I/ 2))- exp(nu*Pi*I/ 2)*BesselK(nu, z*exp(Pi*I/ 2)) Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[- Pi*I/ 2]]- Exp[\[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}} - Pi*BesselY(nu, z) = exp(- nu*Pi*I/ 2)*BesselK(nu, z*exp(- Pi*I/ 2))+ exp(nu*Pi*I/ 2)*BesselK(nu, z*exp(Pi*I/ 2)) - Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[- Pi*I/ 2]]+ Exp[\[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}} BesselY(nu, z) = exp(+(nu + 1)* Pi*I/ 2)*BesselI(nu, z*exp(- Pi*I/ 2))-(2/ Pi)* exp(- nu*Pi*I/ 2)*BesselK(nu, z*exp(- Pi*I/ 2)) BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)* Pi*I/ 2]*BesselI[\[Nu], z*Exp[- Pi*I/ 2]]-(2/ Pi)* Exp[- \[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[- Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}} BesselY(nu, z) = exp(-(nu + 1)* Pi*I/ 2)*BesselI(nu, z*exp(+ Pi*I/ 2))-(2/ Pi)* exp(+ nu*Pi*I/ 2)*BesselK(nu, z*exp(+ Pi*I/ 2)) BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)* Pi*I/ 2]*BesselI[\[Nu], z*Exp[+ Pi*I/ 2]]-(2/ Pi)* Exp[+ \[Nu]*Pi*I/ 2]*BesselK[\[Nu], z*Exp[+ Pi*I/ 2]] Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselI{\nu}@{z},\modBesselI{-\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z}} (BesselI(nu, z))*diff(BesselI(- nu, z), z)-diff(BesselI(nu, z), z)*(BesselI(- nu, z)) = BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) Wronskian[{BesselI[\[Nu], z], BesselI[- \[Nu], z]}, z] == BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselI{-\nu-1}@{z}-\modBesselI{\nu+1}@{z}\modBesselI{-\nu}@{z} = -2\sin@{\nu\pi}/(\pi z)} BesselI(nu, z)*BesselI(- nu - 1, z)- BesselI(nu + 1, z)*BesselI(- nu, z) = - 2*sin(nu*Pi)/(Pi*z) BesselI[\[Nu], z]*BesselI[- \[Nu]- 1, z]- BesselI[\[Nu]+ 1, z]*BesselI[- \[Nu], z] == - 2*Sin[\[Nu]*Pi]/(Pi*z) Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\modBesselK{\nu}@{z},\modBesselI{\nu}@{z}} = \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z}} (BesselK(nu, z))*diff(BesselI(nu, z), z)-diff(BesselK(nu, z), z)*(BesselI(nu, z)) = BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) Wronskian[{BesselK[\[Nu], z], BesselI[\[Nu], z]}, z] == BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] Successful Successful Skip - symbolical successful subtest Successful [Tested: 70]
10.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselK{\nu+1}@{z}+\modBesselI{\nu+1}@{z}\modBesselK{\nu}@{z} = 1/z} BesselI(nu, z)*BesselK(nu + 1, z)+ BesselI(nu + 1, z)*BesselK(nu, z) = 1/ z BesselI[\[Nu], z]*BesselK[\[Nu]+ 1, z]+ BesselI[\[Nu]+ 1, z]*BesselK[\[Nu], z] == 1/ z Failure Successful Successful [Tested: 70] Successful [Tested: 70]
10.29#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}'@{z} = \modBesselI{1}@{z}} diff( BesselI(0, z), z$(1) ) = BesselI(1, z) D[BesselI[0, z], {z, 1}] == BesselI[1, z] Successful Successful - Successful [Tested: 7]
10.29#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}'@{z} = -\modBesselK{1}@{z}} diff( BesselK(0, z), z$(1) ) = - BesselK(1, z) D[BesselK[0, z], {z, 1}] == - BesselK[1, z] Successful Successful - Successful [Tested: 7]
10.31.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{z} = -\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\modBesselI{0}@{z}+\frac{\tfrac{1}{4}z^{2}}{(1!)^{2}}+(1+\tfrac{1}{2})\frac{(\tfrac{1}{4}z^{2})^{2}}{(2!)^{2}}+(1+\tfrac{1}{2}+\tfrac{1}{3})\frac{(\tfrac{1}{4}z^{2})^{3}}{(3!)^{2}}+\dotsi} BesselK(0, z) = -(ln((1)/(2)*z)+ gamma)* BesselI(0, z)+((1)/(4)*(z)^(2))/((factorial(1))^(2))+(1 +(1)/(2))*(((1)/(4)*(z)^(2))^(2))/((factorial(2))^(2))+(1 +(1)/(2)+(1)/(3))*(((1)/(4)*(z)^(2))^(3))/((factorial(3))^(2))+ .. BesselK[0, z] == -(Log[Divide[1,2]*z]+ EulerGamma)* BesselI[0, z]+Divide[Divide[1,4]*(z)^(2),((1)!)^(2)]+(1 +Divide[1,2])*Divide[(Divide[1,4]*(z)^(2))^(2),((2)!)^(2)]+(1 +Divide[1,2]+Divide[1,3])*Divide[(Divide[1,4]*(z)^(2))^(3),((3)!)^(2)]+ \[Ellipsis] Error Failure -
Failed [7 / 7]
{Plus[Complex[-6.985673039111573*^-6, -1.2369744460005716*^-5], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-7.140527721077872*^-6, -1.2101549865001227*^-5], Times[-1.0, …]] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.31.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z}\modBesselI{\mu}@{z} = (\tfrac{1}{2}z)^{\nu+\mu}\sum_{k=0}^{\infty}\frac{(\nu+\mu+k+1)_{k}(\tfrac{1}{4}z^{2})^{k}}{k!\EulerGamma@{\nu+k+1}\EulerGamma@{\mu+k+1}}} BesselI(nu, z)*BesselI(mu, z) = ((1)/(2)*z)^(nu + mu)* sum((nu + mu + k + 1[k]*((1)/(4)*(z)^(2))^(k))/(factorial(k)*GAMMA(nu + k + 1)*GAMMA(mu + k + 1)), k = 0..infinity) BesselI[\[Nu], z]*BesselI[\[Mu], z] == (Divide[1,2]*z)^(\[Nu]+ \[Mu])* Sum[Divide[Subscript[\[Nu]+ \[Mu]+ k + 1, k]*(Divide[1,4]*(z)^(2))^(k),(k)!*Gamma[\[Nu]+ k + 1]*Gamma[\[Mu]+ k + 1]], {k, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skipped - Because timed out
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta}} BesselI(0, z) = (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{0}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta}} BesselI(0, z) = (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) BesselI[0, z] == Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}} (1)/(Pi)*int(exp(+ z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi) Divide[1,Pi]*Integrate[Exp[+ z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi}\int_{0}^{\pi}e^{- z\cos@@{\theta}}\diff{\theta} = \frac{1}{\pi}\int_{0}^{\pi}\cosh@{z\cos@@{\theta}}\diff{\theta}} (1)/(Pi)*int(exp(- z*cos(theta)), theta = 0..Pi) = (1)/(Pi)*int(cosh(z*cos(theta)), theta = 0..Pi) Divide[1,Pi]*Integrate[Exp[- z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[1,Pi]*Integrate[Cosh[z*Cos[\[Theta]]], {\[Theta], 0, Pi}, GenerateConditions->None] Failure Failure Skipped - Because timed out Successful [Tested: 7]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}} BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] Failure Error Skipped - Because timed out Successful [Tested: 35]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{- z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta}} BesselI(nu, z) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(- z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) BesselI[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] Failure Error Skipped - Because timed out Successful [Tested: 35]
10.32.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\pi}e^{+ z\cos@@{\theta}}(\sin@@{\theta})^{2\nu}\diff{\theta} = \frac{(\frac{1}{2}z)^{\nu}}{\pi^{\frac{1}{2}}\EulerGamma@{\nu+\frac{1}{2}}}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{+ zt}\diff{t}} (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int(exp(+ z*cos(theta))*(sin(theta))^(2*nu), theta = 0..Pi) = (((1)/(2)*z)^(nu))/((Pi)^((1)/(2))* GAMMA(nu +(1)/(2)))*int((1 - (t)^(2))^(nu -(1)/(2))* exp(+ z*t), t = - 1..1) Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[+ z*Cos[\[Theta]]]*(Sin[\[Theta]])^(2*\[Nu]), {\[Theta], 0, Pi}, GenerateConditions->None] == Divide[(Divide[1,2]*z)^\[Nu],(Pi)^(Divide[1,2])* Gamma[\[Nu]+Divide[1,2]]]*Integrate[(1 - (t)^(2))^(\[Nu]-Divide[1,2])* Exp[+ z*t], {t, - 1, 1}, GenerateConditions->None] Failure Error Skipped - Because timed out Successful [Tested: 35]
10.32.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{n}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{n\theta}\diff{\theta}} BesselI(n, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(n*theta), theta = 0..Pi) BesselI[n, z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[n*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None] Failure Error Successful [Tested: 21] Skipped - Because timed out
10.32.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{1}{\pi}\int_{0}^{\pi}e^{z\cos@@{\theta}}\cos@{\nu\theta}\diff{\theta}-\frac{\sin@{\nu\pi}}{\pi}\int_{0}^{\infty}e^{-z\cosh@@{t}-\nu t}\diff{t}} BesselI(nu, z) = (1)/(Pi)*int(exp(z*cos(theta))*cos(nu*theta), theta = 0..Pi)-(sin(nu*Pi))/(Pi)*int(exp(- z*cosh(t)- nu*t), t = 0..infinity) BesselI[\[Nu], z] == Divide[1,Pi]*Integrate[Exp[z*Cos[\[Theta]]]*Cos[\[Nu]*\[Theta]], {\[Theta], 0, Pi}, GenerateConditions->None]-Divide[Sin[\[Nu]*Pi],Pi]*Integrate[Exp[- z*Cosh[t]- \[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.32.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{0}@{x} = \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t}} BesselK(0, x) = int(cos(x*sinh(t)), t = 0..infinity) BesselK[0, x] == Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] Successful Error - Skipped - Because timed out
10.32.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@{x\sinh@@{t}}\diff{t} = \int_{0}^{\infty}\frac{\cos@{xt}}{\sqrt{t^{2}+1}}\diff{t}} int(cos(x*sinh(t)), t = 0..infinity) = int((cos(x*t))/(sqrt((t)^(2)+ 1)), t = 0..infinity) Integrate[Cos[x*Sinh[t]], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Divide[Cos[x*t],Sqrt[(t)^(2)+ 1]], {t, 0, Infinity}, GenerateConditions->None] Successful Error - Skipped - Because timed out
10.32.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{x} = \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t}} BesselK(nu, x) = sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) BesselK[\[Nu], x] == Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Successful Error - Skipped - Because timed out
10.32.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sec@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\cos@{x\sinh@@{t}}\cosh@{\nu t}\diff{t} = \csc@{\tfrac{1}{2}\nu\pi}\int_{0}^{\infty}\sin@{x\sinh@@{t}}\sinh@{\nu t}\diff{t}} sec((1)/(2)*nu*Pi)*int(cos(x*sinh(t))*cosh(nu*t), t = 0..infinity) = csc((1)/(2)*nu*Pi)*int(sin(x*sinh(t))*sinh(nu*t), t = 0..infinity) Sec[Divide[1,2]*\[Nu]*Pi]*Integrate[Cos[x*Sinh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] == Csc[Divide[1,2]*\[Nu]*Pi]*Integrate[Sin[x*Sinh[t]]*Sinh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error - Skipped - Because timed out
10.32.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{\pi^{\frac{1}{2}}(\frac{1}{2}z)^{\nu}}{\EulerGamma@{\nu+\frac{1}{2}}}\int_{0}^{\infty}e^{-z\cosh@@{t}}(\sinh@@{t})^{2\nu}\diff{t}} BesselK(nu, z) = ((Pi)^((1)/(2))*((1)/(2)*z)^(nu))/(GAMMA(nu +(1)/(2)))*int(exp(- z*cosh(t))*(sinh(t))^(2*nu), t = 0..infinity) BesselK[\[Nu], z] == Divide[(Pi)^(Divide[1,2])*(Divide[1,2]*z)^\[Nu],Gamma[\[Nu]+Divide[1,2]]]*Integrate[Exp[- z*Cosh[t]]*(Sinh[t])^(2*\[Nu]), {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.32.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \int_{0}^{\infty}e^{-z\cosh@@{t}}\cosh@{\nu t}\diff{t}} BesselK(nu, z) = int(exp(- z*cosh(t))*cosh(nu*t), t = 0..infinity) BesselK[\[Nu], z] == Integrate[Exp[- z*Cosh[t]]*Cosh[\[Nu]*t], {t, 0, Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.32.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \tfrac{1}{2}(\tfrac{1}{2}z)^{\nu}\int_{0}^{\infty}\exp@{-t-\frac{z^{2}}{4t}}\frac{\diff{t}}{t^{\nu+1}}} BesselK(nu, z) = (1)/(2)*((1)/(2)*z)^(nu)* int(exp(- t -((z)^(2))/(4*t))*(1)/((t)^(nu + 1)), t = 0..infinity) BesselK[\[Nu], z] == Divide[1,2]*(Divide[1,2]*z)^\[Nu]* Integrate[Exp[- t -Divide[(z)^(2),4*t]]*Divide[1,(t)^(\[Nu]+ 1)], {t, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 40]
10.32.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\nu}@{z} = \frac{1}{2\pi i}\int_{\infty-i\pi}^{\infty+i\pi}e^{z\cosh@@{t}-\nu t}\diff{t}} BesselI(nu, z) = (1)/(2*Pi*I)*int(exp(z*cosh(t)- nu*t), t = infinity - I*Pi..infinity + I*Pi) BesselI[\[Nu], z] == Divide[1,2*Pi*I]*Integrate[Exp[z*Cosh[t]- \[Nu]*t], {t, Infinity - I*Pi, Infinity + I*Pi}, GenerateConditions->None] Error Failure -
Failed [50 / 50]
{Complex[0.5303418993681409, 0.010453999760907294] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.7664848208906112, 0.1468422559210476] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
10.32.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{(\frac{1}{2}z)^{\nu}}{4\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{t}\EulerGamma@{t-\nu}(\tfrac{1}{2}z)^{-2t}\diff{t}} BesselK(nu, z) = (((1)/(2)*z)^(nu))/(4*Pi*I)*int(GAMMA(t)*GAMMA(t - nu)*((1)/(2)*z)^(- 2*t), t = c - I*infinity..c + I*infinity) BesselK[\[Nu], z] == Divide[(Divide[1,2]*z)^\[Nu],4*Pi*I]*Integrate[Gamma[t]*Gamma[t - \[Nu]]*(Divide[1,2]*z)^(- 2*t), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Error
Failed [300 / 300]
300/300]: [[.5663982443-.3181066824*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
-1.434992817-2.759712160*I <- {c = -3/2, nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
10.32.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\nu}@{z} = \frac{1}{2\pi^{2}i}\left(\frac{\pi}{2z}\right)^{\frac{1}{2}}e^{-z}\cos@{\nu\pi}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-t-\nu}\EulerGamma@{\tfrac{1}{2}-t+\nu}(2z)^{t}\diff{t}} BesselK(nu, z) = (1)/(2*(Pi)^(2)* I)*((Pi)/(2*z))^((1)/(2))* exp(- z)*cos(nu*Pi)* int(GAMMA(t)*GAMMA((1)/(2)- t - nu)*GAMMA((1)/(2)- t + nu)*(2*z)^(t), t = - I*infinity..I*infinity) BesselK[\[Nu], z] == Divide[1,2*(Pi)^(2)* I]*(Divide[Pi,2*z])^(Divide[1,2])* Exp[- z]*Cos[\[Nu]*Pi]* Integrate[Gamma[t]*Gamma[Divide[1,2]- t - \[Nu]]*Gamma[Divide[1,2]- t + \[Nu]]*(2*z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.32.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselI{\mu}@{z}\modBesselI{\nu}@{z} = \frac{2}{\pi}\int_{0}^{\frac{1}{2}\pi}\modBesselI{\mu+\nu}@{2z\cos@@{\theta}}\cos@{(\mu-\nu)\theta}\diff{\theta}} BesselI(mu, z)*BesselI(nu, z) = (2)/(Pi)*int(BesselI(mu + nu, 2*z*cos(theta))*cos((mu - nu)* theta), theta = 0..(1)/(2)*Pi) BesselI[\[Mu], z]*BesselI[\[Nu], z] == Divide[2,Pi]*Integrate[BesselI[\[Mu]+ \[Nu], 2*z*Cos[\[Theta]]]*Cos[(\[Mu]- \[Nu])* \[Theta]], {\[Theta], 0, Divide[1,2]*Pi}, GenerateConditions->None] Failure Error Skipped - Because timed out Skipped - Because timed out
10.32.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu+\nu}@{2z\cosh@@{t}}\cosh@{(\mu-\nu)t}\diff{t}} BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu + nu, 2*z*cosh(t))*cosh((mu - nu)* t), t = 0..infinity) BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]+ \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]- \[Nu])* t], {t, 0, Infinity}, GenerateConditions->None] Failure Error - Skipped - Because timed out
10.32.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modBesselK{\mu}@{z}\modBesselK{\nu}@{z} = 2\int_{0}^{\infty}\modBesselK{\mu-\nu}@{2z\cosh@@{t}}\cosh@{(\mu+\nu)t}\diff{t}} BesselK(mu, z)*BesselK(nu, z) = 2*int(BesselK(mu - nu, 2*z*cosh(t))*cosh((mu + nu)* t), t = 0..infinity) BesselK[\[Mu], z]*BesselK[\[Nu], z] == 2*Integrate[BesselK[\[Mu]- \[Nu], 2*z*Cosh[t]]*Cosh[(\[Mu]+ \[Nu])* t], {t, 0, Infinity}, GenerateConditions->None] Failure Error - Skipped - Because timed out