DLMF:18.28.E18 (Q5993)

From testwiki
Revision as of 12:24, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.28.E18
No description defined

    Statements

    h n ( sinh t | q ) = = 0 n q 1 2 ( + 1 ) ( q - n ; q ) ( q ; q ) e ( n - 2 ) t = e n t ϕ 1 1 ( q - n 0 ; q , - q e - 2 t ) = i - n H n ( i sinh t | q - 1 ) . continuous-q-inverse-Hermite-polynomial-h 𝑛 𝑡 𝑞 superscript subscript 0 𝑛 superscript 𝑞 1 2 1 q-Pochhammer-symbol superscript 𝑞 𝑛 𝑞 q-Pochhammer-symbol 𝑞 𝑞 superscript 𝑒 𝑛 2 𝑡 superscript 𝑒 𝑛 𝑡 q-hypergeometric-rphis 1 1 superscript 𝑞 𝑛 0 𝑞 𝑞 superscript 𝑒 2 𝑡 imaginary-unit 𝑛 continuous-q-Hermite-polynomial-H 𝑛 imaginary-unit 𝑡 superscript 𝑞 1 {\displaystyle{\displaystyle h_{n}\left(\sinh t\,|\,q\right)=\sum_{\ell=0}^{n}% q^{\frac{1}{2}\ell(\ell+1)}\frac{\left(q^{-n};q\right)_{\ell}}{\left(q;q\right% )_{\ell}}e^{(n-2\ell)t}=e^{nt}{{}_{1}\phi_{1}}\left({q^{-n}\atop 0};q,-qe^{-2t% }\right)={\mathrm{i}^{-n}}H_{n}\left(\mathrm{i}\sinh t\,|\,q^{-1}\right).}}
    0 references
    0 references
    H n ( x | q ) continuous-q-Hermite-polynomial-H 𝑛 𝑥 𝑞 {\displaystyle{\displaystyle H_{\NVar{n}}\left(\NVar{x}\,|\,\NVar{q}\right)}}
    C18.S28.E16.m2abdec
    0 references