DLMF:22.6.E5 (Q6939)

From testwiki
Revision as of 13:57, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:22.6.E5
No description defined

    Statements

    sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 - k 2 sn 4 ( z , k ) , Jacobi-elliptic-sn 2 𝑧 𝑘 2 Jacobi-elliptic-sn 𝑧 𝑘 Jacobi-elliptic-cn 𝑧 𝑘 Jacobi-elliptic-dn 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(2z,k\right)=\frac{2% \operatorname{sn}\left(z,k\right)\operatorname{cn}\left(z,k\right)% \operatorname{dn}\left(z,k\right)}{1-k^{2}{\operatorname{sn}^{4}}\left(z,k% \right)},}}
    0 references
    0 references
    cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E5.m2aadec
    0 references
    dn ( z , k ) Jacobi-elliptic-dn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{dn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E6.m2aadec
    0 references
    sn ( z , k ) Jacobi-elliptic-sn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E4.m2aadec
    0 references