Gamma Function - 5.17 Barnes’ -Function (Double Gamma Function)
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
5.17#Ex1 | \BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z} |
Error
|
BarnesG[z + 1] == Gamma[z]*BarnesG[z]
|
Missing Macro Error | Failure | - | Successful [Tested: 5] | |
5.17#Ex2 | \BarnesG@{1} = 1 |
|
Error
|
BarnesG[1] == 1
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
5.17.E3 | \BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right) |
|
Error
|
BarnesG[z + 1] == (2*Pi)^(z/2)* Exp[-Divide[1,2]*z*(z + 1)-Divide[1,2]*EulerGamma*(z)^(2)]* Product[(1 +Divide[z,k])^(k)* Exp[- z +Divide[(z)^(2),2*k]], {k, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
5.17.E4 | \Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t} |
Error
|
Log[BarnesG[z + 1]] == Divide[1,2]*z*Log[2*Pi]-Divide[1,2]*z*(z + 1)+ z*Log[Gamma[z + 1]]- Integrate[Log[Gamma[t + 1]], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Successful [Tested: 7] | |
5.17.E6 | A = e^{C} |
|
A = exp(C) |
A == Exp[C] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
5.17.E7 | C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) |
|
C = limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity)
|
C == Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None]
|
Failure | Failure | Failed [10 / 10] Result: .6172709270+.5000000000*I
Test Values: {C = 1/2*3^(1/2)+1/2*I}
Result: -.7487544770+.8660254040*I
Test Values: {C = -1/2+1/2*I*3^(1/2)}
Result: .2512455230-.8660254040*I
Test Values: {C = 1/2-1/2*I*3^(1/2)}
Result: -1.114779881-.5000000000*I
Test Values: {C = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [10 / 10]
Result: Complex[0.6172709267506544, 0.49999999999999994]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.7487544770337841, 0.8660254037844387]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
5.17.E7 | \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} |
|
limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity) = (gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2))
|
Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None] == Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)]
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
5.17.E7 | \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1} |
|
(gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2)) = (1)/(12)- subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )
|
Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)] == Divide[1,12]- (D[Zeta[temp], {temp, 1}]/.temp-> - 1)
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |