Error Functions, Dawson’s and Fresnel Integrals - 7.13 Zeros
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.13#Ex13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lambda = 2\sqrt{n}}
\lambda = 2\sqrt{n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (sqrt(4*n - 1)) = 2*sqrt(n) |
(Sqrt[4*n - 1]) == 2*Sqrt[n] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
7.13#Ex14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = (2/\pi)\ln@{\pi\lambda}}
\alpha = (2/\pi)\ln@{\pi\lambda} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | alpha = (2/Pi)*ln(Pi*(sqrt(4*n - 1)))
|
\[Alpha] == (2/Pi)*Log[Pi*(Sqrt[4*n - 1])]
|
Failure | Failure | Failed [9 / 9] Result: .421543168
Test Values: {alpha = 1.5, n = 1}
Result: .151839883
Test Values: {alpha = 1.5, n = 2}
... skip entries to safe data |
Failed [9 / 9]
Result: 0.4215431680821278
Test Values: {Rule[n, 1], Rule[α, 1.5]}
Result: 0.15183988257850767
Test Values: {Rule[n, 2], Rule[α, 1.5]}
... skip entries to safe data |