Incomplete Gamma and Related Functions - 8.11 Asymptotic Approximations and Expansions

From testwiki
Revision as of 12:18, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.11.E2 Ξ“ ⁑ ( a , z ) = z a - 1 ⁒ e - z ⁒ ( βˆ‘ k = 0 n - 1 u k z k + R n ⁒ ( a , z ) ) incomplete-Gamma π‘Ž 𝑧 superscript 𝑧 π‘Ž 1 superscript 𝑒 𝑧 superscript subscript π‘˜ 0 𝑛 1 subscript 𝑒 π‘˜ superscript 𝑧 π‘˜ subscript 𝑅 𝑛 π‘Ž 𝑧 {\displaystyle{\displaystyle\Gamma\left(a,z\right)=z^{a-1}e^{-z}\left(\sum_{k=% 0}^{n-1}\frac{u_{k}}{z^{k}}+R_{n}(a,z)\right)}}
\incGamma@{a}{z} = z^{a-1}e^{-z}\left(\sum_{k=0}^{n-1}\frac{u_{k}}{z^{k}}+R_{n}(a,z)\right)

GAMMA(a, z) = (z)^(a - 1)* exp(- z)*(sum(((- 1)^(k)* pochhammer(1 - a, k))/((z)^(k)), k = 0..n - 1)+ R[n](a , z))
Gamma[a, z] == (z)^(a - 1)* Exp[- z]*(Sum[Divide[(- 1)^(k)* Pochhammer[1 - a, k],(z)^(k)], {k, 0, n - 1}, GenerateConditions->None]+ Subscript[R, n][a , z])
Failure Failure
Failed [300 / 300]
Error
8.11.E4 Ξ³ ⁑ ( a , z ) = z a ⁒ e - z ⁒ βˆ‘ k = 0 ∞ z k ( a ) k + 1 incomplete-gamma π‘Ž 𝑧 superscript 𝑧 π‘Ž superscript 𝑒 𝑧 superscript subscript π‘˜ 0 superscript 𝑧 π‘˜ Pochhammer π‘Ž π‘˜ 1 {\displaystyle{\displaystyle\gamma\left(a,z\right)=z^{a}e^{-z}\sum_{k=0}^{% \infty}\frac{z^{k}}{{\left(a\right)_{k+1}}}}}
\incgamma@{a}{z} = z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Pochhammersym{a}{k+1}}
β„œ ⁑ a > 0 π‘Ž 0 {\displaystyle{\displaystyle\Re a>0}}
GAMMA(a)-GAMMA(a, z) = (z)^(a)* exp(- z)*sum(((z)^(k))/(pochhammer(a, k + 1)), k = 0..infinity)
Gamma[a, 0, z] == (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Pochhammer[a, k + 1]], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
8.11#Ex1 b 0 ⁒ ( Ξ» ) = 1 subscript 𝑏 0 πœ† 1 {\displaystyle{\displaystyle b_{0}(\lambda)=1}}
b_{0}(\lambda) = 1

b[0](lambda) = 1
Subscript[b, 0][\[Lambda]] == 1
Skipped - no semantic math Skipped - no semantic math - -
8.11#Ex2 b 1 ⁒ ( Ξ» ) = Ξ» subscript 𝑏 1 πœ† πœ† {\displaystyle{\displaystyle b_{1}(\lambda)=\lambda}}
b_{1}(\lambda) = \lambda

b[1](lambda) = lambda
Subscript[b, 1][\[Lambda]] == \[Lambda]
Skipped - no semantic math Skipped - no semantic math - -
8.11#Ex3 b 2 ⁒ ( Ξ» ) = Ξ» ⁒ ( 2 ⁒ Ξ» + 1 ) subscript 𝑏 2 πœ† πœ† 2 πœ† 1 {\displaystyle{\displaystyle b_{2}(\lambda)=\lambda(2\lambda+1)}}
b_{2}(\lambda) = \lambda(2\lambda+1)

b[2](lambda) = lambda*(2*lambda + 1)
Subscript[b, 2][\[Lambda]] == \[Lambda]*(2*\[Lambda]+ 1)
Skipped - no semantic math Skipped - no semantic math - -
8.11.E15 S n ⁒ ( x ) = Ξ³ ⁑ ( n + 1 , n ⁒ x ) ( n ⁒ x ) n ⁒ e - n ⁒ x subscript 𝑆 𝑛 π‘₯ incomplete-gamma 𝑛 1 𝑛 π‘₯ superscript 𝑛 π‘₯ 𝑛 superscript 𝑒 𝑛 π‘₯ {\displaystyle{\displaystyle S_{n}(x)=\frac{\gamma\left(n+1,nx\right)}{(nx)^{n% }e^{-nx}}}}
S_{n}(x) = \frac{\incgamma@{n+1}{nx}}{(nx)^{n}e^{-nx}}
β„œ ⁑ ( n + 1 ) > 0 𝑛 1 0 {\displaystyle{\displaystyle\Re(n+1)>0}}
S[n](x) = (GAMMA(n + 1)-GAMMA(n + 1, n*x))/((n*x)^(n)* exp(- n*x))
Subscript[S, n][x] == Divide[Gamma[n + 1, 0, n*x],(n*x)^(n)* Exp[- n*x]]
Failure Failure
Failed [90 / 90]
Failed [90 / 90]
8.11.E19 d k ⁒ ( x ) = ( - 1 ) k ⁒ b k ⁒ ( x ) ( 1 - x ) 2 ⁒ k + 1 subscript 𝑑 π‘˜ π‘₯ superscript 1 π‘˜ subscript 𝑏 π‘˜ π‘₯ superscript 1 π‘₯ 2 π‘˜ 1 {\displaystyle{\displaystyle d_{k}(x)=\frac{(-1)^{k}b_{k}(x)}{(1-x)^{2k+1}}}}
d_{k}(x) = \frac{(-1)^{k}b_{k}(x)}{(1-x)^{2k+1}}

d[k](x) = ((- 1)^(k)* b[k](x))/((1 - x)^(2*k + 1))
Subscript[d, k][x] == Divide[(- 1)^(k)* Subscript[b, k][x],(1 - x)^(2*k + 1)]
Skipped - no semantic math Skipped - no semantic math - -