Bessel Functions - 10.12 Generating Function and Associated Series

From testwiki
Revision as of 11:23, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}}
e^{\frac{1}{2}z(t-t^{-1})} = \sum_{m=-\infty}^{\infty}t^{m}\BesselJ{m}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(m+k+1)} > 0}
exp((1)/(2)*z*(t - (t)^(- 1))) = sum((t)^(m)* BesselJ(m, z), m = - infinity..infinity)
Exp[Divide[1,2]*z*(t - (t)^(- 1))] == Sum[(t)^(m)* BesselJ[m, z], {m, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 42] Successful [Tested: 42]
10.12#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}}
\cos@{z\sin@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}\BesselJ{2k}@{z}\cos@{2k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
cos(z*sin(theta)) = BesselJ(0, z)+ 2*sum(BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Sin[\[Theta]]] == BesselJ[0, z]+ 2*Sum[BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}}
\sin@{z\sin@@{\theta}} = 2\sum_{k=0}^{\infty}\BesselJ{2k+1}@{z}\sin@{(2k+1)\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2k+1)+k+1)} > 0}
sin(z*sin(theta)) = 2*sum(BesselJ(2*k + 1, z)*sin((2*k + 1)*theta), k = 0..infinity)
Sin[z*Sin[\[Theta]]] == 2*Sum[BesselJ[2*k + 1, z]*Sin[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}}
\cos@{z\cos@@{\theta}} = \BesselJ{0}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{2k}@{z}\cos@{2k\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0}
cos(z*cos(theta)) = BesselJ(0, z)+ 2*sum((- 1)^(k)* BesselJ(2*k, z)*cos(2*k*theta), k = 1..infinity)
Cos[z*Cos[\[Theta]]] == BesselJ[0, z]+ 2*Sum[(- 1)^(k)* BesselJ[2*k, z]*Cos[2*k*\[Theta]], {k, 1, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
10.12#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}}
\sin@{z\cos@@{\theta}} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{2k+1}@{z}\cos@{(2k+1)\theta}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{((2k+1)+k+1)} > 0}
sin(z*cos(theta)) = 2*sum((- 1)^(k)* BesselJ(2*k + 1, z)*cos((2*k + 1)*theta), k = 0..infinity)
Sin[z*Cos[\[Theta]]] == 2*Sum[(- 1)^(k)* BesselJ[2*k + 1, z]*Cos[(2*k + 1)*\[Theta]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 70]
10.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb}
1 = \BesselJ{0}@{z}+2\BesselJ{2}@{z}+2\BesselJ{4}@{z}+2\BesselJ{6}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
1 = BesselJ(0, z)+ 2*BesselJ(2, z)+ 2*BesselJ(4, z)+ 2*BesselJ(6, z)+ ..
1 == BesselJ[0, z]+ 2*BesselJ[2, z]+ 2*BesselJ[4, z]+ 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.924736618779559*^-8, -1.6360842739013975*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.440290587615918*^-8, -1.7199789187696823*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb}
\cos@@{z} = \BesselJ{0}@{z}-2\BesselJ{2}@{z}+2\BesselJ{4}@{z}-2\BesselJ{6}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(0+k+1)} > 0, \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
cos(z) = BesselJ(0, z)- 2*BesselJ(2, z)+ 2*BesselJ(4, z)- 2*BesselJ(6, z)+ ..
Cos[z] == BesselJ[0, z]- 2*BesselJ[2, z]+ 2*BesselJ[4, z]- 2*BesselJ[6, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-9.976125969757277*^-8, -1.6267640928768756*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-9.384008414770051*^-8, -1.7292990711625933*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb}
\sin@@{z} = 2\BesselJ{1}@{z}-2\BesselJ{3}@{z}+2\BesselJ{5}@{z}-\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0}
sin(z) = 2*BesselJ(1, z)- 2*BesselJ(3, z)+ 2*BesselJ(5, z)- ..
Sin[z] == 2*BesselJ[1, z]- 2*BesselJ[3, z]+ 2*BesselJ[5, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[2.683443869444524*^-6, 1.443280323643048*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[1.6585570595806232*^-6, -2.68341820086615*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb}
\tfrac{1}{2}z\cos@@{z} = \BesselJ{1}@{z}-9\BesselJ{3}@{z}+25\BesselJ{5}@{z}-49\BesselJ{7}@{z}+\dotsb
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(1+k+1)} > 0, \realpart@@{(3+k+1)} > 0, \realpart@@{(5+k+1)} > 0, \realpart@@{(7+k+1)} > 0}
(1)/(2)*z*cos(z) = BesselJ(1, z)- 9*BesselJ(3, z)+ 25*BesselJ(5, z)- 49*BesselJ(7, z)+ ..
Divide[1,2]*z*Cos[z] == BesselJ[1, z]- 9*BesselJ[3, z]+ 25*BesselJ[5, z]- 49*BesselJ[7, z]+ \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[-1.0583928733431947*^-8, -4.2969798588234076*^-7], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[4.4207480831559565*^-7, 1.0857586385526474*^-8], Times[-1.0, ]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.12#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi}
\tfrac{1}{2}z\sin@@{z} = 4\BesselJ{2}@{z}-16\BesselJ{4}@{z}+36\BesselJ{6}@{z}-\dotsi
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(2+k+1)} > 0, \realpart@@{(4+k+1)} > 0, \realpart@@{(6+k+1)} > 0}
(1)/(2)*z*sin(z) = 4*BesselJ(2, z)- 16*BesselJ(4, z)+ 36*BesselJ(6, z)- ..
Divide[1,2]*z*Sin[z] == 4*BesselJ[2, z]- 16*BesselJ[4, z]+ 36*BesselJ[6, z]- \[Ellipsis]
Error Failure -
Failed [7 / 7]
Result: Plus[Complex[3.196945008165919*^-6, 5.1972576656234*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.997776089863624*^-6, 5.542144419168338*^-6], ]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data