Bessel Functions - 10.38 Derivatives with Respect to Order

From testwiki
Revision as of 12:25, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.38.E1 I + ν ( z ) ν = + I + ν ( z ) ln ( 1 2 z ) - ( 1 2 z ) + ν k = 0 ψ ( k + 1 + ν ) Γ ( k + 1 + ν ) ( 1 4 z 2 ) k k ! partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 modified-Bessel-first-kind 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial I_{+\nu}\left(z\right)}{\partial\nu% }=+I_{+\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)-(\tfrac{1}{2}z)^{+\nu}% \sum_{k=0}^{\infty}\frac{\psi\left(k+1+\nu\right)}{\Gamma\left(k+1+\nu\right)}% \frac{(\frac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\modBesselI{+\nu}@{z}}{\nu} = +\modBesselI{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 𝑘 1 𝜈 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0}}
diff(BesselI(+ nu, z), nu) = + BesselI(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[+ \[Nu], z], \[Nu]] == + BesselI[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}

... skip entries to safe data
10.38.E1 I - ν ( z ) ν = - I - ν ( z ) ln ( 1 2 z ) + ( 1 2 z ) - ν k = 0 ψ ( k + 1 - ν ) Γ ( k + 1 - ν ) ( 1 4 z 2 ) k k ! partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 modified-Bessel-first-kind 𝜈 𝑧 1 2 𝑧 superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 digamma 𝑘 1 𝜈 Euler-Gamma 𝑘 1 𝜈 superscript 1 4 superscript 𝑧 2 𝑘 𝑘 {\displaystyle{\displaystyle\frac{\partial I_{-\nu}\left(z\right)}{\partial\nu% }=-I_{-\nu}\left(z\right)\ln\left(\tfrac{1}{2}z\right)+(\tfrac{1}{2}z)^{-\nu}% \sum_{k=0}^{\infty}\frac{\psi\left(k+1-\nu\right)}{\Gamma\left(k+1-\nu\right)}% \frac{(\frac{1}{4}z^{2})^{k}}{k!}}}
\pderiv{\modBesselI{-\nu}@{z}}{\nu} = -\modBesselI{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\frac{1}{4}z^{2})^{k}}{k!}
( k + 1 + ν ) > 0 , ( k + 1 - ν ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝑘 1 𝜈 0 formulae-sequence 𝑘 1 𝜈 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(k+1+\nu)>0,\Re(k+1-\nu)>0,\Re((-\nu)+k+1)>0}}
diff(BesselI(- nu, z), nu) = - BesselI(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselI[- \[Nu], z], \[Nu]] == - BesselI[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.38.E2 K ν ( z ) ν = 1 2 π csc ( ν π ) ( I - ν ( z ) ν - I ν ( z ) ν ) - π cot ( ν π ) K ν ( z ) partial-derivative modified-Bessel-second-kind 𝜈 𝑧 𝜈 1 2 𝜋 𝜈 𝜋 partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 partial-derivative modified-Bessel-first-kind 𝜈 𝑧 𝜈 𝜋 𝜈 𝜋 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle\frac{\partial K_{\nu}\left(z\right)}{\partial\nu}% =\tfrac{1}{2}\pi\csc\left(\nu\pi\right)\*\left(\frac{\partial I_{-\nu}\left(z% \right)}{\partial\nu}-\frac{\partial I_{\nu}\left(z\right)}{\partial\nu}\right% )-\pi\cot\left(\nu\pi\right)K_{\nu}\left(z\right)}}
\pderiv{\modBesselK{\nu}@{z}}{\nu} = \tfrac{1}{2}\pi\csc@{\nu\pi}\*\left(\pderiv{\modBesselI{-\nu}@{z}}{\nu}-\pderiv{\modBesselI{\nu}@{z}}{\nu}\right)-\pi\cot@{\nu\pi}\modBesselK{\nu}@{z}
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
diff(BesselK(nu, z), nu) = (1)/(2)*Pi*csc(nu*Pi)*(diff(BesselI(- nu, z), nu)- diff(BesselI(nu, z), nu))- Pi*cot(nu*Pi)*BesselK(nu, z)
D[BesselK[\[Nu], z], \[Nu]] == Divide[1,2]*Pi*Csc[\[Nu]*Pi]*(D[BesselI[- \[Nu], z], \[Nu]]- D[BesselI[\[Nu], z], \[Nu]])- Pi*Cot[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Failure - Successful [Tested: 7]