Legendre and Related Functions - 14.29 Generalizations

From testwiki
Revision as of 11:38, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
14.29.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0}
\left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1 - (z)^(2))*diff(w, [z$(2)])- 2*z*diff(w, z)+(nu*(nu + 1)-((mu[1])^(2))/(2*(1 - z))-((mu[2])^(2))/(2*(1 + z)))*w = 0
(1 - (z)^(2))*D[w, {z, 2}]- 2*z*D[w, z]+(\[Nu]*(\[Nu]+ 1)-Divide[(Subscript[\[Mu], 1])^(2),2*(1 - z)]-Divide[(Subscript[\[Mu], 2])^(2),2*(1 + z)])*w == 0
Failure Failure
Failed [300 / 300]
Result: -1.000000001-3.732050810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = 1/2*3^(1/2)+1/2*I}

Result: -1.000000001-3.732050810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [296 / 300]
Result: Complex[-0.7320508075688783, -4.732050807568878]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3322676295501878*^-15, -5.464101615137755]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data