Orthogonal Polynomials - 18.23 Hahn Class: Generating Functions

From testwiki
Revision as of 11:47, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.23.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{z}\left(1-\frac{z}{a}\right)^{x} = \sum_{n=0}^{\infty}\frac{\CharlierpolyC{n}@{x}{a}}{n!}z^{n}}
e^{z}\left(1-\frac{z}{a}\right)^{x} = \sum_{n=0}^{\infty}\frac{\CharlierpolyC{n}@{x}{a}}{n!}z^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
Exp[x + y*I]*(1 -Divide[x + y*I,a])^(x) == Sum[Divide[HypergeometricPFQ[{-(n), -(x)}, {}, -Divide[1,a]],(n)!]*(x + y*I)^(n), {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Missing Macro Error - -
18.23.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{1}{1}@@{a+\iunit x}{2\realpart@@{a}}{-\iunit z}\genhyperF{1}{1}@@{\conj{b}-\iunit x}{2\realpart@@{b}}{\iunit z} = \sum_{n=0}^{\infty}\frac{\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}}}{\Pochhammersym{2\realpart@@{a}}{n}\Pochhammersym{2\realpart@@{b}}{n}}z^{n}}
\genhyperF{1}{1}@@{a+\iunit x}{2\realpart@@{a}}{-\iunit z}\genhyperF{1}{1}@@{\conj{b}-\iunit x}{2\realpart@@{b}}{\iunit z} = \sum_{n=0}^{\infty}\frac{\contHahnpolyp{n}@{x}{a}{b}{\conj{a}}{\conj{b}}}{\Pochhammersym{2\realpart@@{a}}{n}\Pochhammersym{2\realpart@@{b}}{n}}z^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
HypergeometricPFQ[{a + I*x}, {2*Re[a]}, - I*(x + y*I)]*HypergeometricPFQ[{Conjugate[b]- I*x}, {2*Re[b]}, I*(x + y*I)] == Sum[Divide[I^(n)*Divide[Pochhammer[a + Conjugate[a], n]*Pochhammer[a + Conjugate[b], n], (n)!] * HypergeometricPFQ[{-(n), n + 2*Re[a + b] - 1, a + I*(x)}, {a + Conjugate[a], a + Conjugate[b]}, 1],Pochhammer[2*Re[a], n]*Pochhammer[2*Re[b], n]]*(x + y*I)^(n), {n, 0, Infinity}, GenerateConditions->None]
Missing Macro Error Missing Macro Error - -