Elliptic Integrals - 19.32 Conformal Map onto a Rectangle
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple | Symbolic Mathematica | Numeric Maple | Numeric Mathematica | 
|---|---|---|---|---|---|---|---|---|
| 19.32.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(p) = \CarlsonsymellintRF@{p-x_{1}}{p-x_{2}}{p-x_{3}}} z(p) = \CarlsonsymellintRF@{p-x_{1}}{p-x_{2}}{p-x_{3}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (x + y*I)*(p) = 0.5*int(1/(sqrt(t+p - x[1])*sqrt(t+p - x[2])*sqrt(t+p - x[3])), t = 0..infinity)
 | (x + y*I)*(p) == EllipticF[ArcCos[Sqrt[p - Subscript[x, 1]/p - Subscript[x, 3]]],(p - Subscript[x, 3]-p - Subscript[x, 2])/(p - Subscript[x, 3]-p - Subscript[x, 1])]/Sqrt[p - Subscript[x, 3]-p - Subscript[x, 1]]
 | Aborted | Failure | Skipped - Because timed out | Failed [300 / 300] Result: Complex[-0.7208699572238464, -0.7193085577979393]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.3758216901446034, -2.446030868401005]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | 
| 19.32.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x_{1} > x_{2}} x_{1} > x_{2} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | x[1] > x[2] | Subscript[x, 1] > Subscript[x, 2] | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 19.32#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(\infty) = 0} z(\infty) = 0 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | z(infinity) = 0 | z[Infinity] == 0 | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 19.32#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(x_{2}) = z(x_{1})+z(x_{3})} z(x_{2}) = z(x_{1})+z(x_{3}) | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (x + y*I)*(x[2]) = (x + y*I)*(x[1])+(x + y*I)*(x[3]) | (x + y*I)*(Subscript[x, 2]) == (x + y*I)*(Subscript[x, 1])+(x + y*I)*(Subscript[x, 3]) | Skipped - no semantic math | Skipped - no semantic math | - | - | 
| 19.32#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z(x_{3}) = \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0}} z(x_{3}) = \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (x + y*I)*(x[3]) = 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity)
 | (x + y*I)*(Subscript[x, 3]) == EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]]
 | Aborted | Failure | Skipped - Because timed out | Failed [300 / 300] Result: Plus[Complex[1.024519052838329, -0.27451905283832906], Times[Complex[-0.25881904510252074, -0.9659258262890683], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[0.27451905283832917, 1.0245190528383288], Times[Complex[-0.7239434227163943, -0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data | 
| 19.32#Ex4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} = -i\CarlsonsymellintRF@{0}{x_{1}-x_{3}}{x_{2}-x_{3}}} \CarlsonsymellintRF@{x_{3}-x_{1}}{x_{3}-x_{2}}{0} = -i\CarlsonsymellintRF@{0}{x_{1}-x_{3}}{x_{2}-x_{3}} | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | 0.5*int(1/(sqrt(t+x[3]- x[1])*sqrt(t+x[3]- x[2])*sqrt(t+0)), t = 0..infinity) = - I*0.5*int(1/(sqrt(t+0)*sqrt(t+x[1]- x[3])*sqrt(t+x[2]- x[3])), t = 0..infinity)
 | EllipticF[ArcCos[Sqrt[Subscript[x, 3]- Subscript[x, 1]/0]],(0-Subscript[x, 3]- Subscript[x, 2])/(0-Subscript[x, 3]- Subscript[x, 1])]/Sqrt[0-Subscript[x, 3]- Subscript[x, 1]] == - I*EllipticF[ArcCos[Sqrt[0/Subscript[x, 2]- Subscript[x, 3]]],(Subscript[x, 2]- Subscript[x, 3]-Subscript[x, 1]- Subscript[x, 3])/(Subscript[x, 2]- Subscript[x, 3]-0)]/Sqrt[Subscript[x, 2]- Subscript[x, 3]-0]
 | Aborted | Failure | Skipped - Because timed out | Failed [300 / 300] Result: Indeterminate
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Plus[Complex[-0.4754994064110389, 1.6461555153586378], Times[Complex[0.7239434227163943, 0.9434614369855119], EllipticF[DirectedInfinity[], 1.0]]]
Test Values: {Rule[Subscript[x, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Subscript[x, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |