Theta Functions - 20.8 Watson’s Expansions

From testwiki
Revision as of 11:56, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
20.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}}
\frac{\Jacobithetaq{2}@{0}{q}\Jacobithetaq{3}@{z}{q}\Jacobithetaq{4}@{z}{q}}{\Jacobithetaq{2}@{z}{q}} = 2\sum_{n=-\infty}^{\infty}\frac{(-1)^{n}q^{n^{2}}e^{i2nz}}{q^{-n}e^{-iz}+q^{n}e^{iz}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(JacobiTheta2(0, q)*JacobiTheta3(z, q)*JacobiTheta4(z, q))/(JacobiTheta2(z, q)) = 2*sum(((- 1)^(n)* (q)^((n)^(2))* exp(I*2*n*z))/((q)^(- n)* exp(- I*z)+ (q)^(n)* exp(I*z)), n = - infinity..infinity)
Divide[EllipticTheta[2, 0, q]*EllipticTheta[3, z, q]*EllipticTheta[4, z, q],EllipticTheta[2, z, q]] == 2*Sum[Divide[(- 1)^(n)* (q)^((n)^(2))* Exp[I*2*n*z],(q)^(- n)* Exp[- I*z]+ (q)^(n)* Exp[I*z]], {n, - Infinity, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out