Weierstrass Elliptic and Modular Functions - 23.17 Elementary Properties

From testwiki
Revision as of 12:01, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.17#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{i} = \tfrac{1}{2}}
\modularlambdatau@{i} = \tfrac{1}{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ModularLambda[I] == Divide[1,2]
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KleincompinvarJtau@{i} = 1}
\KleincompinvarJtau@{i} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
KleinInvariantJ[I] == 1
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}}
\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]
Missing Macro Error Successful - Successful [Tested: 1]
23.17.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}}
\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}

Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

... skip entries to safe data
23.17.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}}
\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [24 / 100]
Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.17.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})}
\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [4 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

... skip entries to safe data